Geochemical characteristics of solid bitumen in the Jurassic Sangonghe Formation in the central Junggar Basin and its implications for hydrocarbon accumulation process
-
摘要: 准噶尔盆地中部地区侏罗系三工河组储层中广泛发育固体沥青,记录了重要的油气成藏信息。基于岩相学、反射率、激光拉曼光谱和生物标志化合物等多方面的综合分析,结合构造和成藏演化史,探讨了沥青的成因、来源及其对油气成藏的指示意义。研究区三工河组储层沥青主要赋存在构造缝中,裂缝面存在弯曲变形,矿物显微构造变形明显,指示沥青形成与构造活动破坏古油藏有关。沥青的生物标志化合物特征与油源对比结果指示沥青主要来源于二叠系风城组和下乌尔禾组的烃源岩,具有混源成藏特征。沥青成熟度较低(等效镜质体反射率为0.62%~0.79%),且具强烈生物降解特征,说明为生物降解成因沥青,同时生物标志物指示沥青受到晚期原油充注的影响。古油藏成藏时间在中侏罗世车—莫古隆起形成初期,晚侏罗世—早白垩世古隆起抬升遭受强烈剥蚀,古油藏遭受破坏进而引发轻烃组分散逸,并伴随生物降解作用演化形成沥青。早白垩世,下乌尔禾组烃源岩晚期油气开始充注后,三工河组储层没有再发生强烈构造活动,随储层再次埋深和油气充注,最终形成现今油气藏。虽然研究区三工河组储层曾经历构造活动调整,但油气的再次充注使其仍成为有利的勘探对象。Abstract: The ubiquitously distributed solid bitumen in the Jurassic Sangonghe Formation reservoir in the central Junggar Basin recorded the important information of hydrocarbon accumulation. In this study, based on lithology, reflectance of bitumen, laser Raman spectroscopy and biomarkers of bitumen, combined with the history of structure evolution and hydrocarbon accumulation, we studied the genesis of the reservoir bitumen and its indication for oil and gas accumulation. Results indicated that these solid bitumen were mainly distributed in structural fractures, the crack surface of the samples have experienced bending deformation, combined with obvious deformation of mineral microstructure. Solid bitumen was then indicated to be derived from the crude oil evolution after the destruction of the ancient reservoir due to tectonic activities. According to the parameter characteristics of biomarkers of bitumen, the crude oil was mainly derived from the source rocks of the Permian Fengcheng Formation and the Lower Wuerhe Formation. Therefore, the Sangonghe Formation reservoir has multi-source charging features. Due to the low maturity (equivalent vitrinite reflectance: 0.62%-0.79%) of bitumen and the evidence for biodegradation, we concluded that the bitumen was generated by biodegradation. Whereas the biomarker showed that the bitumen was affected by the late oil accumulation. In conclusion, the ancient oil reservoirs were formed during the early stage of the formation of Che-Mo ancient uplift in the Middle Jurassic, and were destroyed during the Late Jurassic to the Early Cretaceous. Light hydrocarbon components were dissipated because of the reservoir destruction, then bitumen was formed due to the biodegradation. In the Early Cretaceous, there was no strong tectonic activity in the Sangonghe reservoir after the late hydrocarbon accumulation from the Lower Wuerhe Formation. With the reburial of the reservoir and hydrocarbon accumulation, the hydrocarbon reservoirs today were formed. Although the reservoir of the Sangonghe Formation has undergone tectonic activity adjustment in the study area, the recharge of oil and gas makes it still a favorable exploration target.
-
Key words:
- laser Raman spectroscopy /
- biomarker /
- bitumen in reservoir /
- Sangonghe Formation /
- Jurassic /
- central Junggar Basin
-
图 2 准噶尔盆地中部地区侏罗系三工河组储层沥青样品特征
a.含沥青脉岩心,庄105井4 380.52 m,J1s21;b.含沥青脉岩心,庄106井4 349.75 m,J1s21;c.遭受风化作用的含沥青脉砂岩,庄7井4 056.8 m,J1s22;d.含层状沥青脉砂岩,准沙5井3 312.94 m,J1s22;e.含层状且产出量较多沥青脉砂岩,庄109井4 297.5 m,J1s21;f.样品镜下荧光特征,庄101井4 352.65 m;g.样品镜下荧光特征(矿物颗粒孔隙有荧光显示),庄103井4 400.2 m
Figure 2. Characteristics of bitumen samples from Jurassic Sangonghe Formation, central Junggar Basin
图 5 准噶尔盆地中部地区埋藏史与生烃史
据参考文献[1]修改。
Figure 5. History of burial and hydrocarbon generation in central Junggar Basin
表 1 准噶尔盆地中部地区侏罗系三工河组储层沥青反射率和等效镜质体反射率
Table 1. Average reflectance of bitumen and equivalent vitrinite reflectance of Jurassic Sangonghe Formation reservoir in central Junggar Basin
样品位置 井号 深度/m 层位 平均Rb/% 平均Ro/% 成熟度 沙窝地 沙1 3 620.92 J1s22 0.47 0.69 低熟 准沙6 3 261.55 J2x 0.55 0.74 低熟 沙11 4 316.50 J1b1 0.61 0.78 低熟 沙11 4 327.30 J1b1 0.57 0.75 低熟 征沙村 征3 5 112.05 J1s21 0.63 0.79 低熟 征11 4 386.90 J1s22 0.36 0.62 低熟 莫西庄 庄5 4 279.81 J1s21 0.45 0.68 低熟 庄6 4 032.26 J1s21 0.36 0.62 低熟 庄7 4 056.80 J1s22 0.53 0.73 低熟 庄101 4 356.96 J1s21 0.53 0.73 低熟 庄101 4 359.00 J1s21 0.50 0.71 低熟 庄105 4 374.97 J1s21 0.36 0.62 低熟 庄105 4 380.52 J1s21 0.50 0.71 低熟 庄106 4 349.75 J1s21 0.50 0.71 低熟 庄109 4 297.50 J1s21 0.51 0.72 低熟 庄109 4 298.70 J1s21 0.55 0.74 低熟 庄110 4 293.07 J2s21 0.44 0.67 低熟 表 2 准噶尔盆地中部地区侏罗系三工河组储层沥青样品Ro(cal)与Ro对比
Table 2. Comparison of Ro(cal) and Ro of bituminous vein in Jurassic Sangonghe Formation, central Junggar Basin
地区 井号 埋深/m 层位 Ro/% D峰位置/cm-1 HWD G峰位置/cm-1 HWG vG-vD SI Ro(cal)/% 沙窝地 沙1 3 620.92 J1s22 0.69 1 359.16 246.29 1 585.43 114.61 226.27 1.98 0.62 沙11 4 316.50 J1b1 0.78 1 363.78 244.20 1 586.58 98.12 222.80 2.04 0.77 沙11 4 327.30 J1b1 0.75 1 351.08 247.23 1 586.58 114.61 235.50 1.98 0.74 准沙6 3 261.55 J2x 0.74 1 356.86 258.00 1 585.43 105.96 228.57 1.86 0.70 征沙村 征3 5 112.05 J1s21 0.79 1 352.85 207.27 1 587.59 126.10 234.74 1.89 0.85 征11 4 386.90 J1s22 0.62 1 360.32 242.01 1 586.58 111.32 226.26 2.02 0.68 莫西庄 庄5 4 279.81 J1s21 0.68 1 356.85 244.09 1 585.43 112.72 228.58 1.99 0.68 庄6 4 032.26 J1s21 0.62 1 356.35 250.94 1 585.26 111.01 228.91 2.05 0.67 庄7 4 056.80 J1s22 0.73 1 358.69 250.11 1 586.42 100.05 227.73 2.14 0.78 庄101 4 356.96 J1s21 0.73 1 352.24 244.42 1 585.43 110.10 233.19 2.00 0.78 庄105 4 359.00 J1s21 0.71 1 358.01 247.81 1 585.43 108.72 227.42 1.88 0.70 庄105 4 374.97 J1s21 0.62 1 354.55 240.96 1 580.81 111.84 226.26 2.07 0.67 庄105 4 380.52 J1s21 0.71 1 358.01 246.66 1 586.58 112.89 228.57 1.91 0.67 庄106 4 349.75 J1s21 0.71 1 354.55 242.33 1 585.43 111.82 230.88 1.94 0.74 庄109 4 297.50 J1s21 0.72 1 358.69 243.69 1 586.42 106.65 227.73 2.09 0.74 庄109 4 298.70 J1s21 0.74 1 345.31 216.55 1 584.27 133.28 238.96 1.74 0.79 庄110 4 293.07 J1s22 0.67 1 359.16 248.00 1 586.58 106.63 227.42 1.98 0.72 表 3 准噶尔盆地中部地区侏罗系三工河组砂岩孔隙中沥青Ro(cal)值
Table 3. Ro(cal) of bituminous vein in sandstone pores in Jurassic Sangonghe Formation, central Junggar Basin
地区 井号 埋深/m 层位 D峰位置/cm-1 HWD G峰位置/cm-1 HWG vG-vD SI Ro(cal)/% 沙窝地 沙1 3 956.1 J1s1 1349.73 165.40 1 589.58 135.21 239.85 2.56 1.10 莫西庄 庄5 4 086.55-1 J1s21 1 362.21 216.12 1 582.65 109.04 220.44 1.92 0.78 庄5 4 086.55-2 J1s21 1 347.65 241.49 1 589.58 115.79 241.93 1.81 0.86 庄6 4 028.68 J1s21 1 360.13 182.08 1 590.27 118.70 230.14 2.38 1.01 庄7 4 073.9 J1s22 1 358.74 185.39 1 579.88 115.68 221.14 2.51 0.88 庄101 4 377-1 J1s21 1 362.21 206.82 1 581.96 115.79 219.75 2.01 0.74 庄101 4 377-1 J1s21 1 368.45 228.76 1 584.73 98.65 216.28 1.79 0.78 庄106 4 319.2 J1s21 1 358.74 234.06 1 595.13 114.70 236.39 2.28 0.81 庄106 4 345.75 J1s21 1 346.96 218.24 1 578.49 126.54 231.53 2.29 0.71 庄109 4 262.9 J1s21 1 361.52 216.65 1 580.57 109.52 219.05 2.00 0.74 庄301 4 248.4-1 J1s21 1 362.21 199.08 1 579.88 116.14 217.67 2.20 0.75 庄301 4 248.4-2 J1s21 1 362.90 209.48 1 583.34 104.61 220.44 2.04 0.86 表 4 准噶尔盆地中部地区原油和储层沥青样品生物标志化合物参数
Table 4. Parameters of biomarkers of crude oil and bitumen in central Junggar Basin
样品编号 层位 岩性 埋深/m 正构烷烃与类异戊二烯烷烃 ΣnC21-/ΣnC22+ 萜类系列 甾类系列 主峰碳 OEP Pr/Ph Pr/nC17 Ph/nC18 三环萜烷 伽马蜡烷/C30藿烷 孕甾烷/甾烷 规则甾烷 C2920S/(20S+20R) C29ββ/(ββ+αα) C20 C21 C23 C27/C29 C28/C29 Y3cp1 J2x 原油 nC15 1.04 1.90 0.40 0.21 2.77 6.38 8.59 6.81 0.32 0.05 0.64 0.92 0.43 0.45 zh6 J1s 原油 nC15 1.06 1.66 0.44 0.26 2.42 5.05 6.66 5.96 0.33 0.04 0.86 0.78 0.44 0.45 z106 J1s21 沥青 4 349.75 nC17 0.99 1.63 0.47 0.33 4.06 13.68 15.76 10.07 0.28 0.09 0.64 0.92 0.43 0.46 z109 J1s21 沥青 4 298.70 nC16 0.89 0.88 0.85 0.18 4.63 3.65 6.98 8.42 0.28 0.07 1.09 0.98 0.43 0.47 z110 J1s22 沥青 4 293.07 nC16 0.60 0.94 0.85 0.17 6.21 2.00 5.60 10.43 0.21 0.08 2.40 1.01 0.41 0.46 zh3 J1s21 沥青 5 112.05 nC16 0.47 0.96 0.83 0.16 7.81 2.69 4.85 7.00 0.22 0.07 2.09 0.81 0.40 0.45 zh11 J1s22 沥青 4 386.90 nC18 0.53 0.82 0.81 0.18 8.49 10.66 16.73 10.99 0.19 0.10 1.49 0.45 0.34 0.51 s1 J1s22 沥青 3 620.92 nC18 0.97 0.89 0.38 0.26 5.23 17.86 20.75 15.08 0.21 0.21 1.33 1.42 0.45 0.44 s11 J1b1 沥青 4 316.50 nC16 0.78 1.01 0.80 0.17 6.04 2.47 5.64 8.71 0.22 0.09 1.75 0.86 0.45 0.42 注:OEP=[(Ci+6Ci+2+Ci+4)/4(Ci+1+Ci+3)]m,m=(-1)i+1; i+2为主峰碳数。 表 5 准噶尔盆地中部地区烃源岩、沥青和原油生物标志化合物典型参数对比
Table 5. Comparison of typical parameters of biomarkers of source rocks, bitumen and crude oil in central Junggar Basin
样品 生物标志化合物 Pr/Ph 伽马蜡烷/C30藿烷 三环萜烷C20-C21-C23峰型 甾烷C28/C29 烃源岩 下乌尔禾组 1.0~2.0 ~0.2 山峰 ~0.6 风城组 < 1.0 ~0.5 上升 ~0.8 佳木河组 ~2 ~0.2 下降 ~0.4 石炭系 ~1.5 ~0.1 下降 ~0.3 沥青 z106 1.63 0.28 山峰 0.92 z109 0.88 0.28 上升 0.98 z110 0.94 0.21 上升 1.01 zh3 0.96 0.22 上升 0.81 zh11 0.82 0.19 山峰 0.45 s1 0.89 0.21 山峰 1.42 s11 1.01 0.22 上升 0.86 原油 Y3cp1 1.90 0.32 山峰 0.92 zh6 1.66 0.33 山峰 0.78 注:烃源岩参数引自文献[18]。 -
[1] 邹华耀, 郝芳, 张柏桥, 等. 准噶尔盆地腹部油气充注与再次运移研究[J]. 地质科学, 2005, 40(4): 499-509. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200504004.htmZOU Huayao, HAO Fang, ZHANG Boqiao, et al. History of hydrocarbon-filling and remigrating in hinterland of the Junggar Basin[J]. Chinese Journal of Geology, 2005, 40(4): 499-509. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200504004.htm [2] 张敏, 蔡春芳, 张俊. 油气藏中沥青垫的研究进展[J]. 地质科技情报, 1997(1): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ701.014.htmZHANG Min, CAI Chunfang, ZHANG Jun. Advances in the research of tar mats in oil and gas reservoirs[J]. Geological Science and Technology Information, 1997(1): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ701.014.htm [3] 肖贤明, 刘德汉, 傅家谟, 等. 应用沥青反射率推算油气生成与运移的地质时间[J]. 科学通报, 2000, 45(19): 2123-2127. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200019020.htmXIAO Xianming, LIU Dehan, FU Jiamo, et al. Dating hydrocarbon generation and migration based on bitumen reflectance[J]. Chinese Science Bulletin, 2001, 46(7): 611-614. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200019020.htm [4] 王建宝, 郭汝泰, 肖贤明, 等. 塔里木盆地轮南低隆起早古生代油气藏形成的期次与时间研究[J]. 沉积学报, 2002, 20(2): 320-325. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200202021.htmWANG Jianbao, GUO Rutai, XIAO Xianming, et al. Timing and phases of hydrocarbon migration and accumulation of the formation of oil and gas pools in Lunnan low uplift of Tarim Basin[J]. Acta Sedimentologica Sinica, 2002, 20(2): 320-325. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200202021.htm [5] 凡元芳. 储层沥青的研究进展及存在问题[J]. 石油地质与工程, 2009, 23(6): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN200906014.htmFAN Yuanfang. Advances and main problems in reservoir bitumen research[J]. Petroleum Geology and Engineering, 2009, 23(6): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN200906014.htm [6] 李二庭, 陈俊, 迪丽达尔·肉孜, 等. 准噶尔盆地腹部地区原油金刚烷化合物特征及应用[J]. 石油实验地质, 2019, 41(4): 569-576. doi: 10.11781/sysydz201904569LI Erting, CHEN Jun, ROUZI Dilidaer, et al. Characteristics of diamondoids in crude oil and its application in hinterland of Junggar Basin[J]. Petroleum Geology & Experiment, 2019, 41(4): 569-576. doi: 10.11781/sysydz201904569 [7] 周妮, 李际, 刘翠敏, 等. 准噶尔盆地南缘油气苗有机地球化学特征及成因[J]. 石油实验地质, 2020, 42(6): 957-964. doi: 10.11781/sysydz202006957ZHOU Ni, LI Ji, LIU Cuimin, et al. Organic geochemistry and genesis of oil and gas seeps in the southern Junggar Basin[J]. Petroleum Geology & Experiment, 2020, 42(6): 957-964. doi: 10.11781/sysydz202006957 [8] 王圣柱, 王千军, 张关龙, 等. 准噶尔盆地石炭系烃源岩发育模式及地球化学特征[J]. 油气地质与采收率, 2020, 27(4): 13-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202004003.htmWANG Shengzhu, WANG Qianjun, ZHANG Guanlong, et al. Development mode and geochemical characteristics of Carboni-ferous source rocks in Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(4): 13-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202004003.htm [9] 陈新, 卢华复, 舒良树, 等. 准噶尔盆地构造演化分析新进展[J]. 高校地质学报, 2002, 8(3): 257-267. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200203002.htmCHEN Xin, LU Huafu, SHU Liangshu, et al. Study on tectonic evolution of Junggar Basin[J]. Geological Journal of China Universities, 2002, 8(3): 257-267. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200203002.htm [10] 何登发, 张义杰, 王绪龙, 等. 准噶尔盆地大油气田的勘探方向[J]. 新疆石油地质, 2004, 25(2): 117-121. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200402000.htmHE Dengfa, ZHANG Yijie, WANG Xulong, et al. Plays for giant oil field prospecting in Junggar Basin[J]. Xinjiang Petroleum Geology, 2004, 25(2): 117-121. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200402000.htm [11] 吴根耀, 马力. "盆""山"耦合和脱耦在含油气盆地分析中的应用[J]. 石油实验地质, 2003, 25(6): 648-660. doi: 10.11781/sysydz200306648WU Genyao, MA Li. Orogeny and coupled/decoupled basin develop-ing: application in petroliferous basin analyses[J]. Petroleum Geology & Experiment, 2003, 25(6): 648-660. doi: 10.11781/sysydz200306648 [12] 罗晓容, 张立宽, 胡才志, 等. 准噶尔盆地中部1、3区块低渗储层油气成藏机理研究[R] 东营: 中国石化胜利油田勘探开发研究院. 2011.LUO Xiaorong, ZHANG Likuan, HU Caizhi, et al. Study on hydrocarbon accumulation mechanism of low permeability reservoirs in blocks 1 and 3 in the central Junggar Basin[R]. Dongying: Research Institute of Exploration and Development, Shengli Oilfield Company, SINOPEC, 2011. [13] JACOB H. Classification, structure, genesis and practical importance of natural solid oil bitumen ("migrabitumen")[J]. International Journal of Coal Geology, 1989, 11(1): 65-79. [14] WILKINS R W T, BOUDOU R, SHERWOOD N, et al. Thermal maturity evaluation from inertinites by Raman spectroscopy: the 'RaMM' technique[J]. International Journal of Coal Geology, 2014, 128-129: 143-152. [15] 何川. 柴达木盆地东部石炭系烃源岩及原油分子地球化学表征[D]. 北京: 中国地质大学(北京), 2020.HE Chuan. Molecular geochemistry of carboniferous source rocks and oil in eastern Qaidam Basin, China NW[D]. Beijing: China University of Geosciences (Beijing), 2020. [16] 王绪龙, 康素芳. 准噶尔盆地西北缘玛北油田油源分析[J]. 西南石油学院学报, 2001, 23(6): 6-8. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY200106001.htmWANG Xulong, KANG Sufang. On the oil source of the Mabei oilfield, Northwest Junggar Basin[J]. Journal of Southwest Petroleum Institute, 2001, 23(6): 6-8. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY200106001.htm [17] 王绪龙, 支东明, 王屿涛, 等. 准噶尔盆地烃源岩与油气地球化学[M]. 北京: 石油工业出版社, 2013.WANG Xulong, ZHI Dongming, WANG Yutao, et al. Source rocks and oil-gas geochemistry in Junggar Basin[M]. Beijing: Petroleum Industry Press, 2013. [18] 张鸾沣. 准噶尔盆地玛湖凹陷深层烃源岩与油气成藏模式研究[D]. 南京: 南京大学, 2015.ZHANG Luanfeng. Hydrocarbon source rock and accumulation model in the deep-buried strata of the Mahu sag in the Junggar Basin, NW China[D]. Nanjing: Nanjing University, 2015. [19] VOLKMAN J K. Biological marker compounds as indicators of the depositional environments of petroleum source rocks[J]. Geological Society, London, Special Publications, 1988, 40(1): 103-122. [20] PETERS K E, MORDOWAN J M. 生物标记化合物指南: 古代沉积物与石油中分子化石的解释[M]. 姜乃煌, 张水昌, 林永汉, 等, 译. 北京: 石油工业出版社, 1995: 106-133.PETERS K E, MORDOWAN J M. The biomarker guide[M]. JIANG Naihuang, ZHANG Shuichang, LIN Yonghan, et al, eds. Beijing: Petroleum Industry Press, 1995: 106-133. [21] 朱允辉, 孟闲龙. 准噶尔盆地车莫古隆起的形成演化及其对腹部油气成藏的影响[J]. 中国西部油气地质, 2005, 1(1): 55-57.ZHU Yunhui, MENG Xianlong. Formation and evolution of the Chemo ancient Upliftand its influence on reservoir formation in the central area, the Junggar Basin[J]. West China Petroleum Geosciences, 2005, 1(1): 55-57.