留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

页岩孔隙中气—水赋存特征研究——以川东南地区下志留统龙马溪组为例

俞凌杰 刘可禹 范明 刘友祥

俞凌杰, 刘可禹, 范明, 刘友祥. 页岩孔隙中气—水赋存特征研究——以川东南地区下志留统龙马溪组为例[J]. 石油实验地质, 2021, 43(6): 1089-1096. doi: 10.11781/sysydz2021061089
引用本文: 俞凌杰, 刘可禹, 范明, 刘友祥. 页岩孔隙中气—水赋存特征研究——以川东南地区下志留统龙马溪组为例[J]. 石油实验地质, 2021, 43(6): 1089-1096. doi: 10.11781/sysydz2021061089
YU Lingjie, LIU Keyu, FAN Ming, LIU Youxiang. Co-occurring characteristics of pore gas and water in shales: a case study of the Lower Silurian Longmaxi Formation in the southeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(6): 1089-1096. doi: 10.11781/sysydz2021061089
Citation: YU Lingjie, LIU Keyu, FAN Ming, LIU Youxiang. Co-occurring characteristics of pore gas and water in shales: a case study of the Lower Silurian Longmaxi Formation in the southeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(6): 1089-1096. doi: 10.11781/sysydz2021061089

页岩孔隙中气—水赋存特征研究——以川东南地区下志留统龙马溪组为例

doi: 10.11781/sysydz2021061089
基金项目: 

国家自然科学基金“页岩气改造散失途径与保存条件” 41690133

详细信息
    作者简介:

    俞凌杰(1982-), 男, 博士研究生, 高级工程师, 从事页岩油气实验技术研究。E-mail: yulj.syky@sinopec.com

  • 中图分类号: TE122.23

Co-occurring characteristics of pore gas and water in shales: a case study of the Lower Silurian Longmaxi Formation in the southeastern Sichuan Basin

  • 摘要: 以川东南地区下志留统龙马溪组页岩为研究对象,借助重量法水蒸气吸附仪、重量法甲烷等温吸附仪以及页岩组成和孔隙结构等分析手段,开展束缚水、吸附气赋存定量研究,并探讨了微纳米孔隙中气—水赋存特征及主要影响因素。研究表明,不同类型页岩束缚水赋存能力差异较明显,可以利用水蒸气吸附—脱附和GAB模型比较准确地定量描述束缚水特征。页岩最大单层水分子吸附量与黏土矿物含量呈显著的正相关,表明黏土矿物为水分子提供了主要的活性吸附位。页岩对水分子的吸附能力要整体高于甲烷分子,而甲烷分子则主要以单层吸附形式在孔隙中赋存。不同页岩中束缚水、吸附气和游离气赋存的孔隙空间存在差异。2 nm以下孔隙均被吸附气和孔隙水所占据;有机碳(TOC)含量小于2.5%的页岩中游离气主体赋存空间约为5 nm以上孔隙,而TOC含量大于2.5%的页岩中游离气赋存空间主体约为3 nm以上孔隙;有机碳含量越高,游离气赋存的空间占比越高。

     

  • 图  1  川东南地区三口井中龙马溪组页岩样品水蒸气吸附—脱附曲线

    Figure  1.  Water vapor adsorption-desorption curves of shales selected from three wells in Lower Silurian Longmaxi Formation shale in southeastern Sichuan Basin

    图  2  川东南地区龙马溪组两个典型页岩样品实测水蒸气吸附曲线与GAB模型拟合的吸附曲线

    Figure  2.  Experimental and GAB model fitting water vapor adsorption curves for two typical shales from Lower Silurian Longmaxi Formation in southeastern Sichuan Basin

    图  3  川东南地区龙马溪组中黏土及TOC含量对页岩最大单层水分子吸附量的影响

    Figure  3.  Impacts of clay mineral content and TOC on the maximum capacity of monolayer water molecule adsorption of shale in Lower Silurian Longmaxi Formation in southeastern Sichuan Basin

    图  4  不同页岩对应的实验所得最大吸附量与理论单层吸附量的比值

    Figure  4.  Ratios between experimental maximum adsorption capacity and theoretical monolayer adsorption capacity of different shales

    图  5  川东南地区龙马溪组页岩TOC对甲烷分子单层吸附量和水分子单层吸附量的影响

    Figure  5.  Impact of TOC on monolayer adsorption capacity of water and methane molecules, Longmaxi Formation, southeastern Sichuan

    表  1  川东南地区下志留统龙马溪组页岩X衍射矿物组成与水蒸气吸附结果

    Table  1.   X-diffraction mineral composition and water vapor adsorption results of Lower Silurian Longmaxi Formation shale in southeastern Sichuan Basin

    样品名称 井号 井深/m ω(TOC)/% X衍射分析结果 单位岩石水蒸气吸附结果
    黏土含量/% 石英含量/% 碳酸盐矿物含量/% Wm/% Wm/(mmol·g-1) K C
    Sw-1 JY11-4 2 271.8 1.02 53.3 40.4 2.0 0.76 0.42 0.60 5.72
    Sw-4 2 286.4 2.83 47.5 37.1 6.5 0.70 0.39 0.68 4.83
    Sw-5 2 289.8 2.93 40.9 45.8 6.3 0.62 0.34 0.71 4.75
    Sw-9 2 308.3 2.06 35.0 51.7 8.5 0.51 0.28 0.7 5.49
    Sw-10 2 311.6 1.91 34.1 53.8 5.6 0.49 0.27 0.69 5.73
    Sw-14 2 329.5 3.58 35.1 53.9 6.3 0.55 0.31 0.74 5.1
    Sw-17 2 342.3 3.54 26.3 58.5 10.6 0.42 0.23 0.78 5.54
    Sw-18 2 347.1 4.16 26.1 61.2 6.4 0.43 0.24 0.77 5.81
    Sw-20 2 355.9 6.20 25.2 65.9 2.8 0.45 0.25 0.83 6.48
    JY2-1 JY2 2 572.5 5.69 18.4 58.3 20.0 0.30 0.17 0.79 2.78
    JY2-2 2 566.8 4.40 25.3 63.8 7.4 0.47 0.26 0.71 2.18
    JY2-3 2 470.9 0.80 64.3 31.6 1.4 1.83 1.02 0.27 2.41
    JY2-4 2 460.3 2.98 44.5 46.3 4.9 0.77 0.43 0.59 2.32
    HD-2 PY1 2 130.4 1.49 52.1 35.8 7.3 1.15 0.64 0.42 2.54
    HD-5 2 138.1 2.36 41.4 43.0 9.9 0.62 0.34 0.56 3.36
    HD-6 2 142.9 2.78 46.4 48.6 2.2 0.64 0.36 0.63 3.95
    注:Wm为水分子最大单层吸附量;K为多层吸附势常数;C为单层吸附热常数。
    下载: 导出CSV

    表  2  川东南地区龙马溪组页岩全孔径分布与甲烷等温吸附结果

    Table  2.   Full diameter distribution and methane isotherm adsorption results of Longmaxi Formation shale in southeastern Sichuan Basin

    样品名称 井号 井深/m 全孔径分布结果 甲烷等温吸附结果
    比表面积/(m2·g-1) 总孔容/(mL·g-1) VL/(m3·t-1) PL/MPa 甲烷VL/(mmol·g-1) 理论单层吸附量/(m3·t-1)
    Sw-1 JY11-4 2 271.8 9.8 0.014 25 1.80 3.93 0.08 3.22
    Sw-4 2 286.4 18.4 0.024 54 3.14 4.16 0.14 6.04
    Sw-5 2 289.8 18.5 0.024 40 3.00 3.66 0.13 6.07
    Sw-9 2 308.3 12.4 0.019 86 2.37 4.37 0.11 4.07
    Sw-10 2 311.6 11.3 0.018 36 2.32 5.86 0.10 3.71
    Sw-14 2 329.5 20.0 0.026 97 3.08 3.66 0.14 6.57
    Sw-17 2 342.3 15.4 0.022 95 2.94 3.48 0.13 5.06
    Sw-18 2 347.1 19.2 0.026 71 3.24 3.32 0.14 6.30
    Sw-20 2 355.9 26.7 0.034 44 4.07 2.76 0.18 8.76
    JY2-1 JY2 2 572.5 24.6 0.035 20 3.86 1.16 0.17 8.08
    JY2-2 2 566.8 17.3 0.030 00 3.52 1.55 0.16 5.68
    JY2-3 2 470.9 9.4 0.007 39 1.68 3.67 0.08 3.09
    JY2-4 2 460.3 17.3 0.019 81 - - - 5.58
    HD-2 PY1 2 130.4 11.4 0.017 40 2.40 2.57 0.11 3.74
    HD-5 2 138.1 11.8 0.023 90 2.14 2.78 0.10 3.87
    HD-6 2 142.9 15.6 0.020 60 3.13 2.01 0.14 5.12
    下载: 导出CSV

    表  3  川东南地区龙马溪组不同页岩孔隙中束缚水、吸附气和游离气赋存空间特征

    Table  3.   Illustration of pores occupied by bound water, adsorbed gas and free gas in different shales in Lower Silurian Longmaxi Formation, southeastern Sichuan Basin

  • [1] SAKHAEE-POUR A, BRYANT S L. Pore structure of shale[J]. Fuel, 2015, 143: 467-475. doi: 10.1016/j.fuel.2014.11.053
    [2] AMANN-HILDENBRAND A, GHANIZADEH A, KROOSS B M. Transport properties of unconventional gas systems[J]. Marine and Petroleum Geology, 2012, 31(1): 90-99. doi: 10.1016/j.marpetgeo.2011.11.009
    [3] GENSTERBLUM Y, GHANIZADEH A, CUSS R J, et al. Gas transport and storage capacity in shale gas reservoirs-a reviews Part A: Transport processes[J]. Journal of Unconventional Oil and Gas Resources, 2015, 12: 87-122. doi: 10.1016/j.juogr.2015.08.001
    [4] 王飞宇, 贺志勇, 孟晓辉, 等. 页岩气赋存形式和初始原地气量(OGIP)预测技术[J]. 天然气地球科学, 2011, 22(3): 501-510. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201103019.htm

    WANG Feiyu, HE Zhiyong, MENG Xiaohui, et al. Occurrence of shale gas and prediction of original gas in-place (OGIP)[J]. Natural Gas Geosciences, 2011, 22(3): 501-510. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201103019.htm
    [5] HAO Fang, ZOU Huayao, LU Yongchao. Mechanisms of shale gas storage: implications for shale gas exploration in China[J]. AAPG Bulletin, 2013, 97(8): 1325-1346. doi: 10.1306/02141312091
    [6] 方朝合, 黄志龙, 王巧智, 等. 富含气页岩储层超低含水饱和度成因及意义[J]. 天然气地球科学, 2014, 25(3): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201403021.htm

    FANG Chaohe, HUANG Zhilong, WANG Qiaozhi, et al. Cause and significance of the ultra-low water saturation in gas-enriched shale reservoir[J]. Natural Gas Geoscience, 2014, 25(3): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201403021.htm
    [7] 刘洪林, 王红岩. 中国南方海相页岩超低含水饱和度特征及超压核心区选择指标[J]. 天然气工业, 2013, 33(7): 140-144. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201307032.htm

    LIU Honglin, WANG Hongyan. Ultra-low water saturation characte-ristics and the identification of over-pressured play fairways of marine shales in South China[J]. Natural Gas Industry, 2013, 33(7): 140-144. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201307032.htm
    [8] HATCH C D, WIESE J S, CRANE C C, et al. Water adsorption on clay minerals as a function of relative humidity: application of BET and freundlich adsorption models[J]. Langmuir, 2012, 28(3): 1790-1803. doi: 10.1021/la2042873
    [9] LAHN L, BERTIER P, SEEMANN T, et al. Distribution of sorbed water in the pore network of mudstones assessed from physisorption measurements[J]. Microporous and Mesoporous Materials, 2020, 295: 109902. doi: 10.1016/j.micromeso.2019.109902
    [10] SHEN W J, LI X Z, LU X B, et al. Experimental study and isotherm models of water vapor adsorption in shale rocks[J]. Journal of Natural Gas Science and Engineering, 2018, 52: 484-491. doi: 10.1016/j.jngse.2018.02.002
    [11] SANG G J, LIU S M, ZHANG R, et al. Nanopore characterization of mine roof shales by SANS, nitrogen adsorption, and mercury intrusion: impact on water adsorption/retention behavior[J]. International Journal of Coal Geology, 2018, 200: 173-185. doi: 10.1016/j.coal.2018.11.009
    [12] SANG G J, LIU S M, ELSWORTH D. Water vapor sorption pro-perties of Illinois shales under dynamic water vapor conditions: experimentation and modeling[J]. Water Resources Research, 2019, 55(8): 7212-7228. doi: 10.1029/2019WR024992
    [13] BAHADUR J, MELNICHENKO Y B, MASTALERZ M, et al. Hierarchical pore morphology of cretaceous shale: a small-angle neutron scattering and ultrasmall-angle neutron scattering study[J]. Energy & Fuels, 2014, 28(10): 6336-6344.
    [14] KING H E Jr, EBERLE A, WALTERS C C, et al. Pore architecture and connectivity in gas shale[J]. Energy & Fuels, 2015, 29(3): 1375-1390.
    [15] CLARKSON C R, SOLANO N, BUSTIN R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J]. Fuel, 2013, 103: 606-616. doi: 10.1016/j.fuel.2012.06.119
    [16] RUPPERT L F, SAKUROVS R, BLACH T P, et al. A USANS/SANS study of the accessibility of pores in the barnett shale to methane and water[J]. Energy & Fuel, 2013, 27(2): 772-779.
    [17] 李靖, 李相方, 陈掌星, 等. 页岩储层束缚水影响下的气相渗透率模型[J]. 石油科学通报, 2018, 3(2): 167-182. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201802005.htm

    LI Jing, LI Xiangfang, CHEN Zhangxin, et al. Permeability model for gas transport through shale nanopores with irreducible water saturation[J]. Petroleum Science Bulletin, 2018, 3(2): 167-182. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201802005.htm
    [18] SUN Z, LI X F, SHI J T, et al. Apparent permeability model for real gas transport through shale gas reservoirs considering water distribution characteristic[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1008-1019. doi: 10.1016/j.ijheatmasstransfer.2017.07.123
    [19] ZHANG T W, ELLIS G S, RUPPEL S C, et al. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J]. Organic Geochemistry, 2012, 47: 120-131. doi: 10.1016/j.orggeochem.2012.03.012
    [20] GASPARIK M, BERTIER P, GENSTERBLUM Y, et al. Geological controls on the methane storage capacity in organic-rich shales[J]. International Journal of Coal Geology, 2014, 123: 34-51. doi: 10.1016/j.coal.2013.06.010
    [21] MERKEL A, FINK R, LITTKE R. The role of pre-adsorbed water on methane sorption capacity of Bossier and Haynesville shales[J]. International Journal of Coal Geology, 2015, 147/148: 1-8. doi: 10.1016/j.coal.2015.06.003
    [22] BARRETT E P, JOYNER L G, HALENDA P P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms[J]. Journal of the American Chemical Society, 1951, 73(1): 373-380. doi: 10.1021/ja01145a126
    [23] MUSA M A A, YIN C Y, SAVORY R M. Analysis of the textural characterstics and pore size distribution of a commercial zeolite using various adsorption models[J]. Journal of Applied Sciences, 2011, 11(21): 3650-3654. doi: 10.3923/jas.2011.3650.3654
    [24] BRUNAUER S, EMMETT P H, TELLER E. Adsorption of gases in multi molecular layers[J]. Journal of the American Chemical Society, 1938, 60(2): 309-319. doi: 10.1021/ja01269a023
    [25] 俞凌杰, 范明, 陈红宇, 等. 富有机质页岩高温高压重量法等温吸附实验[J]. 石油学报, 2015, 36(5): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201505004.htm

    YU Lingjie, FAN Ming, CHEN Hongyu, et al. Isothermal adsorption experiment of organic-rich shale under high temperature and pressure using gravimetric method[J]. Acta Petrolei Sinica, 2015, 36(5): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201505004.htm
    [26] TANG X, RIPEPI N, VALENTINE K A, et al. Water vapor sorption on Marcellus shale: measurement, modeling and thermodynamic analysis[J]. Fuel, 2017, 209: 606-614. doi: 10.1016/j.fuel.2017.07.062
    [27] SEEMANN T, BERTIER P, KROOSS B M, et al. Water vapour sorption on mudrocks[J]. Geological Society, London, Special Publications, 2017, 454(1): 201-233. doi: 10.1144/SP454.8
    [28] ZOLFAGHARI A, DEHGHANPOUR H, XU M X. Water sorption behaviour of gas shales: II. Pore size distribution[J]. International Journal of Coal Geology, 2017, 179: 187-195. doi: 10.1016/j.coal.2017.05.009
    [29] DEHGHANPOUR H, ZUBAIR H A, CHHABRA A, et al. Liquid intake of organic shales[J]. Energy & Fuels, 2012, 26(9): 5750-5758.
    [30] STRIOLO A, GUBBINS K E, GRUSZKIEWICZ M S, et al. Effect of temperature on the adsorption of water in porous carbons[J]. Langmuir, 2005, 21(21): 9457-9467. doi: 10.1021/la051120t
    [31] MOSHER K, HE H J, LIU Y Y, et al. Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems[J]. International Journal of Coal Geology, 2013, 109/110: 36-44. doi: 10.1016/j.coal.2013.01.001
    [32] CHEN G H, LU S F, LIU K Y, et al. Critical factors controlling shale gas adsorption mechanisms on different minerals investigated using GCMC simulations[J]. Marine and Petroleum Geology, 2019, 100: 31-42. doi: 10.1016/j.marpetgeo.2018.10.023
    [33] 俞凌杰, 范明, 腾格尔, 等. 埋藏条件下页岩气赋存形式研究[J]. 石油实验地质, 2016, 38(4): 438-444. doi: 10.11781/sysydz201604438

    YU Lingjie, FAN Ming, TENGER, et al. Shale gas occurrence under burial conditions[J]. Petroleum Geology & Experiment, 2016, 38(4): 438-444. doi: 10.11781/sysydz201604438
    [34] REXER T F, BENHAM M J, APLIN A C, et al. Methane adsorption on shale under simulated geological temperature and pressure conditions[J]. Energy & Fuels, 2013, 27(6): 3099-3109.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  434
  • HTML全文浏览量:  109
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-09
  • 修回日期:  2021-10-12
  • 刊出日期:  2021-11-28

目录

    /

    返回文章
    返回