Basic characteristics and exploration potential of shale gas in Longtan Formation of Upper Permian in eastern Sichuan Basin
-
摘要: 四川盆地晚二叠世龙潭期沉积相类型多样,为落实不同沉积相带的页岩气勘探潜力,针对不同相带典型井开展了系统的页岩气形成条件分析,四川盆地晚二叠世龙潭期富有机质页岩主要发育在潮坪—潟湖相和陆棚相,其中潮坪—潟湖相泥页岩分布在资阳—永川—綦江一带,岩性组合复杂,泥岩、页岩、泥质碳酸盐岩不等厚互层,煤层全段均有发育,具有“高TOC、高黏土、高孔隙度、高含气量”的四高特征,有机质类型主体为Ⅲ型;浅水混积陆棚相龙潭组分布在广安—长寿—南川一带,煤层减少,灰质增加,龙潭组二段煤层基本不发育,有机质类型为Ⅱ2-Ⅱ1型,具有厚度稳定、TOC中等、脆性矿物含量高、有机孔发育的特点,气测普遍活跃;深水陆棚相上二叠统吴家坪组分布在石柱—万县以及广元—梁平一带,煤层仅在吴家坪组底部发育,吴家坪组二段以硅质页岩、泥岩为主,具有“高TOC、高脆性矿物含量、高孔隙度、高含气量、高含气饱和度”等五高特征,有机质类型为Ⅱ1型,有机质孔普见,是目前二叠系页岩气勘探开发的主力层系。Abstract: Various types of sedimentary facies were developed during the Longtan period of the Late Permian, Sichuan Basin. To discover the shale gas exploration potential of belts with different sedimentary facies, a systematic analysis of shale gas generation conditions was carried out on the basis of different typical wells. The organic-rich shale developed in the Sichuan Basin during the Late Permian Longtan period was mainly distributed in tidal flat-lagoon and shelf facies. With complex lithological combinations, the tidal flat-lagoon facies shale was distributed in the Ziyang-Yongchuan-Qijiang areas. Mudstone, shale, and argillaceous carbonate rocks were interbedded with varying thickness and coal seams were also developed in all sections. Furthermore, it has the characteristics of "high TOC, clay and gas contents, and high porosity". The main organic matter type is type Ⅲ. The shallow water, mixed shelf facies in the Longtan Formation was mainly distributed in the Guang'an-Changshou-Nanchuan area, with reduced coal seams and increased ash content. Coal seams were barely developed in the second member of the Longtan Formation. Its organic matter type is Ⅱ2-Ⅱ1, with stable thickness as well as medium TOC and brittle mineral contents. Gas logging was anomalous. The deep-water shelf facies in the Wujiaping Formation were mainly distributed in Shizhu-Wanxian and Guangyuan-Liangping. Coal seams were only developed at the bottom of the Wujiaping Formation. Moreover, the second member of the Wujiaping Formation is composed of siliceous shale and mudstone, which has the characteristics of "high TOC content, high brittle mineral content, high porosity, high gas content, and high gas saturation". Its organic matter type is Ⅱ1, with widespread organic pores. It is currently the main strata for the exploration and development of Permian shale gas in the Sichuan Basin.
-
Key words:
- shale gas /
- Longtan Formation /
- Wujiaping Formation /
- Permian /
- exploration potential /
- eastern Sichuan area
-
图 3 川东地区SY1井上二叠统龙潭组页岩特征综合柱状图
据文献[10],有修改。
Figure 3. Comprehensive stratigraphic histogram of shale, Upper Permian Longtan Formation, well SY1, eastern Sichuan Basin
图 8 川东地区HYx井上二叠统吴家坪组页岩特征综合柱状图
据文献[10],有修改。
Figure 8. Comprehensive stratigraphic histogram of shale, Upper Permian Wujiaping Formation, well HYx, eastern Sichuan Basin
表 1 川东地区不同类型龙潭组/吴家坪组页岩基本特征对比
Table 1. Basic characteristics of different types of shale in Longtan/Wujiaping formations, eastern Sichuan Basin
参数类型 潮坪—潟湖亚相(SY1井) 浅水混积陆棚亚相(SYx井) 深水陆棚亚相(HYx井) 潭二段/吴二段厚度/m 39 30 20 生烃条件 有机质类型 Ⅲ型为主 Ⅱ2型 Ⅱ1型 有机质丰度/% 4.3 2.2 8.3 热演化程度(Ro)/% 2.3 1.9 1.9 储集条件 有机质内孔 不发育 较发育 发育 孔隙度/% 2.67~9.74 3.03~9.88 可压性 黏土矿物含量/% 55 34 17 动态杨氏模量/GPa 22.5 40 42 总含气量/(m3·t-1) 1.22 3.81 气测曲线形态 尖峰状 箱状 箱状 -
[1] 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49(1): 13-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001002.htmNIE Haikuan, HE Zhiliang, LIU Guangxiang, et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020, 49(1): 13-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001002.htm [2] 曹清古, 刘光祥, 张长江, 等. 四川盆地晚二叠世龙潭期沉积环境及其源控作用分析[J]. 石油实验地质, 2013, 35(1): 36-41. doi: 10.11781/sysydz201301036CAO Qinggu, LIU Guangxiang, ZHANG Changjiang, et al. Sedimentary environment and its controlling on source rocks during Late Permian in Sichuan Basin[J]. Petroleum Geology & Experiment, 2013, 35(1): 36-41. doi: 10.11781/sysydz201301036 [3] 赵建华, 金之钧, 林畅松, 等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质, 2019, 40(4): 701-715. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201904003.htmZHAO Jianhua, JIN Zhijun, LIN Changsong, et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology, 2019, 40(4): 701-715. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201904003.htm [4] WANG Hongyan, SHI Zhensheng, QUN Zhao, et al. Stratigraphic framework of the Wufeng-Longmaxi shale in and around the Sichuan Basin, China: implications for targeting shale gas[J]. Energy Geoscience, 2020, 1(3/4): 124-133. [5] 魏力民, 王岩, 张天操, 等. 页岩气富集与高产主控因素: 以川南地区五峰组—龙马溪组为例[J]. 断块油气田, 2020, 27(6): 700-704. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202006006.htmWEI Limin, WANG Yan, ZHANG Tiancao, et al. Main control factors of enrichment and high production of shale gas: a case study of Wufeng-Longmaxi Formation in Southern Sichuan[J]. Fault-Block Oil and Gas Field, 2020, 27(6): 700-704. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202006006.htm [6] 张涛, 林娟华, 韩月卿, 等. 四川盆地东部中二叠统茅口组热液白云岩发育模式及对储层的改造[J]. 石油与天然气地质, 2020, 41(1): 132-143. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001013.htmZHANG Tao, LIN Juanhua, HAN Yueqing, et al. Pattern of hydrothermal dolomitization in the Middle Permian Maokou Formation, eastern Sichuan Basin, and its alteration on reservoirs herein[J]. Oil & Gas Geology, 2020, 41(1): 132-143. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001013.htm [7] 张奥博, 汤达祯, 陶树, 等. 中美典型含油气页岩地质特征及开发现状[J]. 油气地质与采收率, 2019, 26(1): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901004.htmZHANG Aobo, TANG Dazhen, TAO Shu, et al. Analysis of geolo-gical background and development situation of typical oil/gas-bearing shales in China and America[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901004.htm [8] 张鹏, 黄宇琪, 杨军伟, 等. 黔西北龙潭组页岩吸附能力主控因素分析[J]. 断块油气田, 2019, 26(2): 162-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201902007.htmZHANG Peng, HUANG Yuqi, YANG Junwei, et al. Main controlling factors of shale adsorption capacity of Longtan Formation in Northwest Guizhou[J]. Fault-Block Oil and Gas Field, 2019, 26(2): 162-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201902007.htm [9] 刘光祥, 金之钧, 邓模, 等. 川东地区上二叠统龙潭组页岩气勘探潜力[J]. 石油与天然气地质, 2015, 36(3): 481-487. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503019.htmLIU Guangxiang, JIN Zhijun, DENG Mo, et al. Exploration potential for shale gas in the Upper Permian Longtan Formation in eastern Sichuan Basin[J]. Oil & Gas Geology, 2015, 36(3): 481-487. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503019.htm [10] 赵培荣, 高波, 郭战峰, 等. 四川盆地上二叠统海陆过渡相和深水陆棚相页岩气的勘探潜力[J]. 石油实验地质, 2020, 42(3): 335-344. doi: 10.11781/sysydz202003335ZHAO Peirong, GAO Bo, GUO Zhanfeng, et al. Exploration potential of marine-continental transitional and deep-water shelf shale gas in Upper Permian, Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(3): 335-344. doi: 10.11781/sysydz202003335 [11] 郭旭升, 胡东风, 刘若冰, 等. 四川盆地二叠系海陆过渡相页岩气地质条件及勘探潜力[J]. 天然气工业, 2018, 38(10): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201810003.htmGUO Xusheng, HU Dongfeng, LIU Ruobing, et al. Geological conditions and exploration potential of Permian marine-continent transitional facies shale gas in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(10): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201810003.htm [12] 童崇光. 新构造运动与四川盆地构造演化及气藏形成[J]. 成都理工学院学报, 2000, 27(2): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200002002.htmTONG Chongguang. Relationship between Neotectonic movement and structural evolution and gas pools formation of Sichuan Basin[J]. Journal of Chengdu University of Technology, 2000, 27(2): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200002002.htm [13] 林良彪, 陈洪德, 朱利东. 重庆石柱吴家坪组硅质岩地球化学特征[J]. 矿物岩石, 2010, 30(3): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201003007.htmLIN Liangbiao, CHEN Hongde, ZHU Lidong. Geochemical characteristics of silicalites from Wujiaping Formation in Shizhu, Chongqing[J]. Journal of Mineralogy and Petrology, 2010, 30(3): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201003007.htm [14] 梁冰, 石迎爽, 孙维吉, 等. 中国煤系"三气"成藏特征及共采可能性[J]. 煤炭学报, 2016, 41(1): 167-173. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201601024.htmLIANG Bing, SHI Yingshuang, SUN Weiji, et al. Reservoir forming characteristics of "the three gases" in coal measure and the possibility of commingling in China[J]. Journal of China Coal Society, 2016, 41(1): 167-173. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201601024.htm [15] 张汉荣. 川东南地区志留系页岩含气量特征及其影响因素[J]. 天然气工业, 2016, 36(8): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201608007.htmZHANG Hanrong. Gas content of the Silurian shale in the SE Sichuan Basin and its controlling factors[J]. Natural Gas Industry, 2016, 36(8): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201608007.htm [16] 陈斐然, 魏祥峰, 刘珠江, 等. 四川盆地二叠系龙潭组页岩孔隙发育特征及主控因素[J]. 天然气地球科学, 2020, 31(11): 1593-1602. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202011008.htmCHEN Feiran, WEI Xiangfeng, LIU Zhujiang, et al. Pore development characteristics and main controlling factors of the Permian marine-continent transitional shale in the Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(11): 1593-1602. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202011008.htm [17] 张吉振, 李贤庆, 王元, 等. 海陆过渡相煤系页岩气成藏条件及储层特征: 以四川盆地南部龙潭组为例[J]. 煤炭学报, 2015, 40(8): 1871-1878. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201508023.htmZHANG Jizhen, LI Xianqing, WANG Yuan, et al. Accumulation conditions and reservoir characteristics of marine-terrigenous facies coal measures shale gas from Longtan Formation in south Sichuan Basin[J]. Journal of China Coal Society, 2015, 40(8): 1871-1878. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201508023.htm [18] 孙超, 姚素平. 页岩油储层孔隙发育特征及表征方法[J]. 油气地质与采收率, 2019, 26(1): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901016.htmSUN Chao, YAO Suping. Pore structure and characterization methods of shale oil reservoir[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901016.htm [19] 邓恩德, 颜智华, 姜秉仁, 等. 黔西地区上二叠统龙潭组海陆交互相页岩气储层特征[J]. 石油实验地质, 2020, 42(3): 467-476. doi: 10.11781/sysydz202003467DENG Ende, YAN Zhihua, JIANG Bingren, et al. Reservoir characteristics of marine-continental shale gas in Upper Permian Longtan Formation, western Guizhou province[J]. Petroleum Geology & Experiment, 2020, 42(3): 467-476. doi: 10.11781/sysydz202003467 [20] 张光荣, 聂海宽, 唐玄, 等. 页岩中黄铁矿类型及其对页岩气富集的影响: 以四川盆地及其周缘五峰组—龙马溪组页岩为例[J]. 石油实验地质, 2020, 42(3): 459-466. doi: 10.11781/sysydz202003459ZHANG Guangrong, NIE Haikuan, TANG Xuan, et al. Pyrite type and its effect on shale gas accumulation: a case study of Wufeng-Longmaxi shale in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2020, 42(3): 459-466. doi: 10.11781/sysydz202003459 [21] CAO Taotao, XU Hao, LIU Guangxiang, et al. Factors influencing microstructure and porosity in shales of the Wufeng-Longmaxi formations in northwestern Guizhou, China[J]. Journal of Petroleum Science and Engineering, 2020, 191: 107181. [22] 匡立春, 董大忠, 何文渊, 等. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景[J]. 石油勘探与开发, 2020, 47(3): 435-446. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003002.htmKUANG Lichun, DONG Dazhong, HE Wenyuan, et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 435-446. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003002.htm [23] 曹涛涛, 刘光祥, 曹清古, 等. 有机显微组成对泥页岩有机孔发育的影响: 以川东地区海陆过渡相龙潭组泥页岩为例[J]. 石油与天然气地质, 2018, 39(1): 40-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201801006.htmCAO Taotao, LIU Guangxiang, CAO Qinggu, et al. Influence of maceral composition on organic pore development in shale: a case study of transitional Longtan Formation shale in eastern Sichuan basin[J]. Oil & Gas Geology, 2018, 39(1): 40-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201801006.htm [24] 邓恩德, 易同生, 颜智华, 等. 海陆过渡相页岩气聚集条件及勘探潜力研究: 以黔北地区金沙参1井龙潭组为例[J]. 中国矿业大学学报, 2020, 49(6): 1166-1181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202006014.htmDENG Ende, YI Tongsheng, YAN Zhihua, et al. Accumulation condition and shale gas potential of the marine-terrestrial transitional facies: a case study of Jinshacan 1 well of Longtan Formation in northern Guizhou[J]. Journal of China University of Mining & Technology, 2020, 49(6): 1166-1181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202006014.htm [25] 何治亮, 聂海宽, 李双建, 等. 特提斯域板块构造约束下上扬子地区二叠系龙潭组页岩气的差异性赋存[J]. 石油与天然气地质, 2021, 42(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101002.htmHE Zhiliang, NIE Haikuan, LI Shuangjian, et al. Differential occurrence of shale gas in the Permian Longtan Formation of Upper Yangtze region constrained by plate tectonics in the Tethyan domain[J]. Oil & Gas Geology, 2021, 42(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101002.htm [26] 梁西文, 李乐. 鄂西渝东区上二叠统吴家坪组页岩气地质条件及勘探潜力[J]. 石油实验地质, 2021, 43(3): 386-394. doi: 10.11781/sysydz202103386LIANG Xiwen, LI Le. Geological conditions and exploration potential for shale gas in Upper Permian Wujiaping Formation in the region of western Hubei-eastern Chongqing[J]. Petroleum Geology & Experiment, 2021, 43(3): 386-394. doi: 10.11781/sysydz202103386 [27] 郭少斌, 王子龙, 马啸. 中国重点地区二叠系海陆过渡相页岩气勘探前景[J]. 石油实验地质, 2021, 43(3): 377-385. doi: 10.11781/sysydz202103377GUO Shaobin, WANG Zilong, MA Xiao. Exploration prospect of shale gas with Permian transitional facies of some key areas in China[J]. Petroleum Geology & Experiment, 2021, 43(3): 377-385. doi: 10.11781/sysydz202103377