Geological characteristics and distribution of global primary hydrocarbon accumulations of Precambrian-Lower Cambrian
-
摘要: 近年来,前寒武系—下寒武统原生油气资源在全球油气勘探领域越来越受重视。位于俄罗斯的东西伯利亚盆地、中东的阿曼盆地以及我国的四川盆地前寒武系—下寒武统的原生油气藏储量最为丰富。以这3个盆地为例,系统全面地阐释全球前寒武系—下寒武统原生油气藏的地质及其分布特征,以期为古老层系油气勘探的进一步突破提供参考。全球前寒武系—下寒武统原生油气藏油气探明和控制储量已达30 090 MMboe(4.12×108 t油当量),其中84.2%分布于东西伯利亚盆地,而阿曼盆地和四川盆地分别占8.9%和6.5%。烃源岩以海相泥页岩、碳酸盐岩为主,整体处于低熟—过熟阶段,且大部分分布于构造低部位;储集岩主要为碎屑岩和碳酸盐岩,早期白云岩化作用、表生淋滤作用和油气早期充注是古老碳酸盐岩储层发育的重要机制;深层和超深层古老层系的油气大部分储于碳酸盐岩中。同时,广泛发育的优质区域性盖层是油气得以有效保存的一个重要因素。自生自储成藏模式、源储相邻近源成藏模式和源储相隔“远”源成藏模式构成了前寒武系—下寒武统原生油气藏的主要成藏模式。Abstract: In recent years, primary hydrocarbon accumulations of Precambrian-Lower Cambrian have caused an increasing attention in the oil and gas explorations worldwide. The Eastern Siberian Basin in Russia, the Oman Basin in the Middle East, and the Sichuan Basin in China are endowed with the richest oil and gas reserves in the Precambrian-Lower Cambrian primary hydrocarbon accumulations. This study takes these three basins as examples to systematical and comprehensively document the geological characteristics and distribution of the global Precambrian-Lower Cambrian primary hydrocarbon accumulations through a large amount of data analysis and statistics, to provide insights for further breakthroughs of oil and gas explorations in ancient stratigraphic successions of sedimentary basins. The global proven and controlled reserves of Precambrian-Lower Cambrian primary hydrocarbon accumulations have reached 30.09×109 boe (4.12×108 t), of which 84.2% are distributed in the Eastern Siberian Basin, while the Oman Basin and the Sichuan Basin account for 8.9% and 6.5%, respectively. The source rocks are dominated by marine mudstones, shales and carbonate rocks, which are generally immature to over-mature and mostly distribute in low structural parts. Carbonate rocks and clastic rocks are important types of reservoir rocks. Early dolomitization, superficial leaching and hydrocarbons injection are important mechanisms for the development of ancient carbonate reservoirs. Most of the hydrocarbons in deep and ultra-deep ancient strata are stored in carbonate rocks. At the same time, the extensively developed high-quality regional caprocks are the key to preserving abundant hydrocarbons. Three types of accumulation models, self-generating and self-preserving, reservoirs adjacent to source rocks, and reservoirs isolated to source rocks, constitute the main models of Precambrian-Lower Cambrian primary hydrocarbon accumulations.
-
图 4 东西伯利亚盆地里菲系地层、寒武系蒸发岩及油气田分布
据参考文献[26]修改。
Figure 4. Distribution of Riphean rocks beneath pre-Vendian unconformity, oil and gas fields as well as Cambrian evaporites in the Eastern Siberian Basin
表 1 全球前寒武系—下寒武统原生油气储量
Table 1. Global primary hydrocarbon reserves of Precambrian-Lower Cambrian
盆地 油气田个数 油气藏个数 石油/MMb 天然气/Bscf 凝析油/MMb 总储量/MMboe 总剩余储量/MMboe 单个油气藏平均规模/MMboe 东西伯利亚盆地 95 265 5 595.0 112 180.2 1 040.4 25 332.1 25 105.6 95.6 阿曼盆地 53 56 1 121.3 8 424.9 146.9 2 672.3 2 581.6 47.7 四川盆地 4 9 0.0 11 390.6 47.6 1 944.4 1 837.2 216.0 印度温迪亚和印度河盆地 12 14 67.5 19.5 0.0 70.8 70.8 5.1 巴西圣弗朗西斯科盆地 1 3 0.0 185.4 0.0 30.9 90.9 10.3 北非陶丹尼盆地 3 3 0.0 162.0 0.2 27.2 27.2 9.1 澳大利亚阿玛迪斯盆地和麦克阿瑟盆地 8 10 2.0 80.9 0.1 15.6 15.6 1.6 伏尔加乌拉尔盆地 3 3 1.5 0.1 0.0 1.5 1.5 0.5 合计 179 363 6 787.3 132 433.6 1 235.2 30 094.8 29 670.4 82.9 注:原始数据源于IHS[17]。 表 2 东西伯利亚盆地、阿曼盆地和四川盆地烃源岩特征
Table 2. Characteristics of source rocks in the Eastern Siberian, Oman and Sichuan Basins
盆地 烃源岩 岩性 ω(TOC)/% Ro/% 干酪根类型 生烃时间 东西伯利亚盆地 文德系(前寒武系) 暗色泥页岩、碳酸盐岩 中南部:<0.5前帕托姆坳陷:0.5~1.0 Ⅱ 里菲系(前寒武系) 海相泥页岩、泥灰岩 叶尼塞—拜基特:0.7~16.0;贝加尔—前帕托姆:0.6~12.9 0.9~2.0 阿曼盆地 盐上寒武系达哈哈班组 碳酸盐岩 平均5.0,最大8.0 Ⅰ/Ⅱ Z烃源岩:O; 烃源岩:P3-C1 盐间文德系—下寒武统阿拉群 海相泥页岩、海相沉积硅质岩和海相碳酸盐岩 海相碳酸盐岩:0.1~1.9,平均0.9;Al Shoumou组硅酸盐岩:3.0~4.0;U页岩:5.0~15.0;Thuleilat组页岩:5.0~15.0 Ⅰ/Ⅱ 盐下文德系奈丰群 页岩、白云岩 最大7.0,平均4.0 Ⅱ 四川盆地 寒武系沧浪铺组 泥岩 0.5~5.8,平均1.3 Ⅰ/Ⅱ P-T2生油,T3-K裂解成气 寒武系筇竹寺组 页岩 0.5~7.6,平均1.9 1.8~3.9 Ⅰ/Ⅱ 震旦系灯影组 泥岩、泥质白云岩 0.2~3.7,平均0.6 2.0~3.5 Ⅰ/Ⅱ 震旦系陡山沱组 页岩 0.6~4.6,平均2.1 2.1~3.8 Ⅰ/Ⅱ 表 3 东伯利亚盆地已发现前寒武系—下寒武统原生油气藏储量
Table 3. Proved and probable primary hydrocarbon reserves of Precambrian-Lower Cambrian in the Eastern Siberian Basin
类别 石油/MMb 天然气/Bscf 凝析油/MMb 总储量/MMboe 占盆地总量百分比/% 文德系含油气系统 3 742.1 41 668.7 259.5 10 946.4 43.2 里菲系含油气系统 1 852.9 70 511.5 780.9 14 385.7 56.8 合计 5 595.0 112 180.2 1 040.4 25 332.1 100.0 注:原始数据源于IHS[17]。 表 4 南阿曼盐盆烃源岩及其油气储量贡献率
Table 4. Source rocks and their rates of contribution to hydrocarbon reserves in the South Oman Salt Basin
烃源岩—主力储集层 石油/MMb 天然气/Bscf 凝析油/MMb 总储量/MMboe 占盆地总量百分比/% 奈丰群—侯格夫子系统 789.5 9.1 0.0 791.0 15.5 阿拉群硅质岩和页岩—后侯格夫砂岩子系统 2 342.3 196.1 0.0 2 374.9 46.7 阿拉群硅质岩和页岩—硅质岩子系统 146.0 296.0 0.0 195.3 3.8 Birba台地碳酸盐岩原油子系统 321.0 1 508.8 26.6 599.0 11.8 豪威尔台地碳酸盐岩原油子系统 571.6 2 696.0 106.0 1 126.9 22.2 合计 4 170.4 4 706.0 132.6 5 087.1 100.0 注:原始数据源于IHS[15],后侯格夫砂岩指比侯格夫超群更年轻的砂岩储层。 表 5 东西伯利亚盆地、阿曼盆地和四川盆地储层特征
Table 5. Characteristics of reservoir rocks in the Eastern Siberian, Oman and Sichuan Basins
盆地 储层 岩性 沉积相 孔隙度/% 渗透率/10-3 μm2 总厚度/m 净厚度/m 东西伯利亚 文德系 砂岩 河流、三角洲和边缘海 4~19 3~600 3~90 1~35 文德系、寒武系 碳酸盐岩 潮缘、浅海陆架 3~13 1~45 6~30 2~19 里菲系 碳酸盐岩 浅海陆架 1~4.5 平均30 9~217 阿曼 下寒武统尼姆尔群 砂岩 冲积扇和河流相 150~457 25~250 下寒武统阿拉群 硅质岩 深水盆地相 11.6~30 5.2~9 90~555 29~366 文德系奈丰群 碳酸盐岩 潮坪,浅海 7~8.9 2.8~120 20~400 10~111 四川 寒武系龙王庙组 白云岩 局限台地台内浅滩、台内边缘礁滩相 2.0~18.5 0.000 1~248 10~60 震旦系灯影组四段 白云岩为主 碳酸盐台地 2.1~8.6 0.01~10.0 <40 震旦系灯影组二段 白云岩为主 碳酸盐台地 2.7~4.5 1~10 5.1~69.1 (上部) 表 6 阿曼盆地已发现油气储量
Table 6. Discovered oil and gas reserves in the Oman Basin
类别 石油/MMb 天然气/MMscf 凝析油/MMb 总储量/MMboe 占盆地总量百分比/% 前寒武系/下寒武统超含油气系统 9 361.95 53 575 847 1 086.53 19 377.79 70.4 前寒武系/下寒武统超含油气系统原生油气藏 1 121.28 8 424 915 146.85 2 672.28 9.7 全盆地 15 367.75 65 885 888 1 180.55 27 524.28 100.0 注:原始数据源自IHS[15] -
[1] BHAT G M, CRAIG J, HAFIZ M, et al. Geology and hydrocarbon potential of Neoproterozoic-Cambrian basins in Asia: an introduction[J]. Geological Society, 2012, 366(1): 1-17. doi: 10.1144/SP366.15 [2] 杨一珉, 罗健, 徐云龙, 等. 渤南低凸起下古生界碳酸盐岩潜山储层特征及控制因素[J]. 断块油气田, 2020, 27(4): 448-453. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202004010.htmYANG Yimin, LUO Jian, XU Yunlong, et al. Reservoir characteristics and controlling factors of carbonate buried hill in the Lower Paleozoic of Bonan low uplift[J]. Fault-Block Oil and Gas Field, 2020, 27(4): 448-453. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202004010.htm [3] 文舰, 彭军, 陈友莲, 等. 四川盆地中部-北部地区沧浪铺组层序地层研究[J]. 断块油气田, 2020, 27(4): 424-431. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202004005.htmWEN Jian, PENG Jun, CHEN Youlian, et al. Study on sequence stratigraphy of Canglangpu Formation in the central-northern Sichuan Basin[J]. Fault-Block Oil and Gas Field, 2020, 27(4): 424-431. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202004005.htm [4] 赵文智, 胡素云, 汪泽成, 等. 中国元古界-寒武系油气地质条件与勘探地位[J]. 石油勘探与开发, 2018, 45(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801002.htmZHAO Wenzhi, HU Suyun, WANG Zecheng, et al. Petroleum geological conditions and exploration importance of Proterozoic to Cambrian in China[J]. Petroleum Exploration and Development, 2018, 45(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801002.htm [5] 马新海, 王年梅, 田小彬. 塔东地区震旦系白云岩成因及储层发育模式[J]. 断块油气田, 2019, 26(5): 566-570. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201905006.htmMA Xinhai, WANG Nianmei, TIAN Xiaobin. Genesis mechanism and reservoir model of Sinian dolomite in eastern Tarim area[J]. Fault-Block Oil and Gas Field, 2019, 26(5): 566-570. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201905006.htm [6] NIE Haikuan, LI Donghui, LIU Guangxiang, et al. An overview of the geology and production of the Fuling shale gas field, Sichuan Basin, China[J]. Energy Geoscience, 2020, 1(3/4): 147-164. [7] 王铁冠, 韩克猷. 论中-新元古界的原生油气资源[J]. 石油学报, 2011, 32(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201101002.htmWANG Tieguan, HAN Keyou. On Meso-Neoproterozoic primary petroleum resources[J]. Acta Petrolei Sinica, 2011, 32(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201101002.htm [8] CRAIG J, BIFFI U, GALIMBERTI R F, et al. The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks[J]. Marine and Petroleum Geology, 2013, 40: 1-47. doi: 10.1016/j.marpetgeo.2012.09.011 [9] DICKAS A B. Precambrian as a hydrocarbon exploration target[J]. Geoscience Wisconsin, 1986, 11(9): 5-7. [10] DICKAS A B. Worldwide distribution of Precambrian hydrocarbon deposits[J]. Geoscience Wisconsin, 1986, 11(9): 8-13. [11] KUZNETSOV V G. Riphean hydrocarbon reservoirs of the Yurubchen-Tokhom Zone, Lena-Tunguska Province, NE Russia[J]. Journal of Petroleum Geology, 1997, 20(4): 459-474. doi: 10.1111/j.1747-5457.1997.tb00926.x [12] MURRAY G E, KACZOR M J, MCARTHUR R E. Indigenous Precambrian petroleum revisted[J]. AAPG Bulletin, 1980, 64(10): 1681-1700. [13] 杜汝霖. 燕山地区震旦亚界及其矿产[J]. 河北地质学院学报, 1978(2): 5-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX197802002.htmDU Rulin. The Sinian subsphere and its mineral resources in Yan-shan area[J]. Journal of Hebei Institute of Geology, 1978(2): 5-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX197802002.htm [14] 张长根, 熊继辉. 燕山西段震旦亚界油气生成问题探讨[J]. 华东石油学院学报, 1979(1): 88-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX197901006.htmZHANG Changgen, XIONG Jihui. Discussion on oil and gas generation in the Sinian subsphere in the western part of Yanshan[J]. Journal of East China Petroleum Institute, 1979(1): 88-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX197901006.htm [15] 黄醒汉, 张一伟. 燕山西段震旦亚界、下古生界含油性[J]. 华东石油学院学报, 1979(1): 103-114. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX197901007.htmHUANG Xinghan, ZHANG Yiwei. The oiliness of Sinian and Lower Paleozoic in the western part of Yanshan[J]. Journal of East China Petroleum Institute, 1979(1): 103-114. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX197901007.htm [16] 王铁冠. 燕山地区震旦亚界油苗的原生性及其石油地质意义[J]. 石油勘探与开发, 1980(2): 34-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198002003.htmWANG Tieguan. The primary nature of Sinian subsphere oil seedlings in Yanshan area and their petroleum geological signifi-cance[J]. Petroleum Exploration and Development, 1980(2): 34-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198002003.htm [17] IHS Energy Group. International petroleum exploration and production database includes data current as of August[R]. Englewood: IHS Energy, 2017. [18] FROLOV S V, AKHMANOV G G, BAKAY E A, et al. Meso-Neoproterozoic petroleum systems of the Eastern Siberian sedimentary basins[J]. Precambrian Research, 2015, 259: 95-113. [19] TERKEN J M J, FREWIN N L, INDRELID S L. Petroleum systems of Oman: charge timing and risks[J]. AAPG Bulletin, 2001, 85(10): 1817-1845. [20] 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系-寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htmZOU Caineng, DU Jinhu, XU Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htm [21] KONTOROVICH A E, IZOSIMOVA A N, KONTOROVICH A A, et al. Geological structure and conditions of the formation of the giant Yurubchen-Tokhoma zone of oil and gas accumulation in the Upper Proterozoic of the Siberian Platform[J]. Russian Geology and Geophysics, 1996, 37(8): 166-195. [22] KELLY A E, LOVE G D, ZUMBERGE J E, et al. Hydrocarbon biomarkers of Neoproterozoic to Lower Cambrian oils from Eastern Siberia[J]. Organic Geochemistry, 2011, 42(6): 640-654. [23] GROSJEAN E, LOVE G D, STALVIES C, et al. Origin of petroleum in the Neoproterozoic-Cambrian South Oman Salt Basin[J]. Organic Geochemistry, 2009, 40(1): 87-110. [24] 汪泽成, 王铜山, 文龙, 等. 四川盆地安岳特大型气田基本地质特征与形成条件[J]. 中国海上油气, 2016, 28(2): 45-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201602005.htmWANG Zecheng, WANG Tongshan, WEN Long, et al. Basic geolo-gical characteristics and accumulation conditions of Anyue giant gas field, Sichuan Basin[J]. China Offshore Oil and Gas, 2016, 28(2): 45-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201602005.htm [25] C&C Reservoirs. Field Evaluation Report: Birba Field, South Oman Salt Basin, Oman[R]. Houston: C&C Reservoirs, 2009. [26] ULMISHEK G F. Petroleum geology and resources of the Nepa-Botuoba High, Angara-Lena Terrace, and Cis-Patom Foredeep, southeastern Siberian Craton, Russia[J]. Bulletin of United States Geological Survey Report, 2001, 2201-c: 1-16. [27] QOBI L, ATLAS B, DE KUIJPER A, et al. Permeability determination from Stoneley waves in the Ara Group carbonates, Oman[J]. GeoArabia, 2001, 6(4): 649-666. [28] AL-SIYABI H A. Exploration history of the Ara intrasalt carbonate stringers in the South Oman Salt Basin[J]. GeoArabia, 2005, 10(4): 39-72.