Diagenetic evolution of key minerals and its controls on reservoir quality of Upper Ordovician Wufeng-Lower Silurian Longmaxi shale of Sichuan Basin
-
摘要: 利用岩心—薄片—扫描电镜观察、X-射线衍射分析、碳酸盐岩碳氧同位素和能谱分析等手段,对四川盆地上奥陶统五峰组—下志留统龙马溪组页岩中的石英、长石、黄铁矿、碳酸盐类和黏土矿物进行了有效识别与划分,分析了矿物成岩演化序列及其对储层发育的影响。结果表明,良好的物质基础和独特的成岩改造是优质页岩储层形成的关键:(1)莓状/自形黄铁矿、生物石英和微生物白云石主要形成于同生—早成岩阶段早期,对页岩原始孔隙的保持具有破坏性和建设性双重作用,其建设性支撑格架作用对优质页岩的形成起决定性作用,此类矿物与陆源碎屑构成的刚性支撑格架有利于原始孔隙的保持与后期的压裂改造。(2)生烃—成岩协同演化促进储集空间的发育,中成岩早期有机酸的产生和消耗、不稳定矿物(长石和碳酸盐矿物)溶蚀/蚀变、黏土矿物转化和干酪根生油具有同步性,为生油期液态烃的充注与滞留提供了有利空间;中成岩晚期—晚成岩阶段,干酪根和滞留烃裂解生气、成孔和增压促进了有机孔与微裂缝的发育,利于页岩气的富集与高产。Abstract: Based on core, thin section, scanning electron microscopy observations, X-ray diffraction analysis, as well as carbon and oxygen isotopes and energy spectrum analysis of carbonate rocks, the quartz, feldspar, pyrite, carbonate and clay minerals in shale of the Upper Ordovician Wufeng-Lower Silurian Longmaxi formations of Sichuan Basin were effectively characterised and classified, and the influences of their diagenetic evolution sequence on the development of shale reservoir were discussed. The results showed that good material basis and unique diagenetic sequence were the key factors for the formation of high-quality shale reservoirs. (1) Framboidal/euhedral pyrite, bio-quartz and microbial dolomite were mainly formed from the syngenetic stage to the A-substage of early diagenetic stage. They were both destructive and constructive for maintaining the original pores in shale, and the constructive supporting framework of which was critical for the formation of high-quality shale reservoir. The rigid framework formed by these early-formed minerals and terrigenous debris facilitated the maintenance of original pores and the reservoir stimulation of shale gas exploitation. (2) The co-evolution of hydrocarbon generation and diagenesis promoted the development of reservoir spaces. In the A-substage of middle diagenetic stage, the production and consumption of organic acids, the dissolution/alteration of unstable minerals (feldspar and carbonate minerals), clay mineral conversion and oil generation from kerogen were synchronic, which provided favorable space for the charging and retention of liquid hydrocarbons during the oil generation period. From the B-substage of middle diagenetic stage to the late diagenetic stage, the shale gas/organic pore generation and pressure increase of kerogen and retained hydrocarbon cracking promoted the development of organic pores and micro-fractures, which was conducive to the enrichment and high production of shale gas.
-
Key words:
- mineral type /
- diagenetic evolution sequence /
- shale gas /
- Wufeng Formation /
- Longmaxi Formation /
- Upper Ordovician /
- Lower Silurian /
- Sichuan Basin
-
图 4 川南地区上奥陶统五峰组—下志留统龙马溪组页岩碳酸盐矿物微观特征
a.颗粒状方解石与白云石微观特征,白云石边缘较规则,见溶蚀孔隙,YYA井,3 863.3 m;b.钙质生屑,WYB井,3 851.7 m;c.颗粒—胶结物形态方解石,WYA井,3 587.3 m;d-f.白云石边缘规则、自形程度高,形成时期与莓状黄铁矿接近,早于生物石英,WYA井,3 569.7~3 587.7 m
Figure 4. Microscopic characteristics of carbonate minerals in Upper Ordovician Wufeng-Lower Silurian Longmaxi shale, Sichuan Basin
图 5 川南地区上奥陶统五峰组—下志留统龙马溪组页岩碳酸盐矿物碳氧同位素与成因类型特征
马家沟组资料引自文献[18]。
Figure 5. Characteristics of C/O isotopes and genesis of carbonate minerals in Upper Ordovician Wufeng-Lower Silurian Longmaxi shale, Sichuan Basin
图 6 四川盆地上奥陶统五峰组—下志留统龙马溪组页岩黄铁矿微观特征及其与TOC含量关系
a.黄铁矿与TOC含量关系;b.莓状黄铁矿,形成时期早于生物石英,WYC井,3 704.4 m;c.自形黄铁矿,YYA井,3 831.1 m;d.黄铁矿交代海绵骨针,形成时期早于生物石英,DYA井,3 805.8 m
Figure 6. Characteristics of pyrites and their relationship with TOC contents in Upper Ordovician Wufeng-Lower Silurian Longmaxi shale, Sichuan Basin
图 8 四川盆地涪陵地区上奥陶统五峰组—下志留统龙马溪组页岩黏土矿物组成对有机质赋存与储层物性的影响
a.五峰组—龙马溪组页岩有机黏土复合体微观特征,JYC井,2 570 m;b.左图局部放大,有机孔发育;c.伊利石相对含量与孔隙度/TOC的关系;d.伊蒙混层相对含量与孔隙度/TOC的关系
Figure 8. Influence of clay mineral composition on organic matter occurrence and reservoir physical properties of Upper Ordovician Wufeng-Lower Silurian Longmaxi shale in Fuling area, Sichuan Basin
-
[1] 郭旭升, 李宇平, 腾格尔, 等. 四川盆地五峰组-龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020, 47(1): 193-201. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htmGUO Xusheng, LI Yuping, BORJIGEN Tenger, et al. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng formation-Silurian Longmaxi formation in Sichuan Basin, China[J]. Petroleum Exploration and Development, 2020, 47(1): 193-201. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htm [2] 胡宗全, 杜伟, 刘忠宝, 等. 页岩气源储耦合机理及其应用[M]. 北京: 地质出版社, 2018.HU Zongquan, DU Wei, LIU Zhongbao, et al. Source-reservoir coupling mechanism and application of shale gas[M]. Beijing: Geological Publishing House, 2018. [3] 王濡岳, 胡宗全, 董立, 等. 页岩气储层表征评价技术进展与思考[J]. 石油与天然气地质, 2021, 42(1): 54-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101006.htmWANG Ruyue, HU Zongquan, DONG Li, et al. Advancement and trends of shale gas reservoir characterization and evaluation[J]. Oil & Gas Geology, 2021, 42(1): 54-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101006.htm [4] 张士万, 孟志勇, 郭战峰, 等. 涪陵地区龙马溪组页岩储层特征及其发育主控因素[J]. 天然气工业, 2014, 34(12): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201412003.htmZHANG Shiwan, MENG Zhiyong, GUO Zhanfeng, et al. Characteristics and major controlling factors of shale reservoirs in the Longmaxi Fm, Fuling area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201412003.htm [5] 王濡岳, 胡宗全, 聂海宽, 等. 川东南五峰组-龙马溪组与黔东南牛蹄塘组页岩储层特征对比分析与差异性探讨[J]. 石油实验地质, 2018, 40(5): 639-649. doi: 10.11781/sysydz201805639WANG Ruyue, HU Zongquan, NIE Haikuan, et al. Comparative analysis and discussion of shale reservoir characteristics in the Wufeng-Longmaxi and Niutitang formations: a case study of the well JY1 in SE Sichuan Basin and well TX1 in SE Guizhou area[J]. Petroleum Geology & Experiment, 2018, 40(5): 639-649. doi: 10.11781/sysydz201805639 [6] 魏力民, 王岩, 张天操, 等. 页岩气富集与高产主控因素: 以川南地区五峰组-龙马溪组为例[J]. 断块油气田, 2020, 27(6): 700-704. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202006006.htmWEI Limin, WANG Yan, ZHANG Tiancao, et al. Main control factors of enrichment and high production of shale gas: a case study of Wufeng-Longmaxi Formation in Southern Sichuan[J]. Fault-Block Oil and Gas Field, 2020, 27(6): 700-704. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202006006.htm [7] 刘树根, 叶玥豪, 冉波, 等. 差异保存条件下页岩孔隙结构特征演化及其意义[J]. 油气藏评价与开发, 2020, 10(5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202005003.htmLIU Shugen, YE Yuehao, RAN Bo, et al. Evolution and implications of shale pore structure characteristics under different preservation conditions[J]. Reservoir Evaluation and Development, 2020, 10(5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202005003.htm [8] 王濡岳, 聂海宽, 胡宗全, 等. 压力演化对页岩气储层的控制作用: 以四川盆地五峰组-龙马溪组为例[J]. 天然气工业, 2020, 40(10): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202010002.htmWANG Ruyue, NIE Haikuan, HU Zongquan, et al. Controlling effect of pressure evolution on shale gas reservoirs: a case study of the Wufeng-Longmaxi formation in the Sichuan Basin[J]. Natural Gas Industry, 2020, 40(10): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202010002.htm [9] 王乔, 李虎, 刘廷, 等. 页岩脆性的表征方法及主控因素[J]. 断块油气田, 2020, 27(4): 458-463. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202004012.htmWANG Qiao, LI Hu, LIU Ting, et al. Characterization method and main controlling factors of shale brittleness[J]. Fault-Block Oil and Gas Field, 2020, 27(4): 458-463. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202004012.htm [10] 赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组-龙马溪组含气页岩中石英成因研究[J]. 天然气地球科学, 2016, 27(2): 377-386. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201602022.htmZHAO Jianhua, JIN Zhijun, JIN Zhenkui, et al. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(2): 377-386. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201602022.htm [11] PELTONEN C, MARCUSSEN Ø, BJØRLYKKE K, et al. Clay mineral diagenesis and quartz cementation in mudstones: the effects of smectite to illite reaction on rock properties[J]. Marine and Petroleum Geology, 2009, 26(6): 887-898. [12] 卢龙飞, 秦建中, 申宝剑, 等. 中上扬子地区五峰组-龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系[J]. 地学前缘, 2018, 25(4): 226-236. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201804022.htmLU Longfei, QIN Jianzhong, SHEN Baojian, et al. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment[J]. Earth Science Frontiers, 2018, 25(4): 226-236. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201804022.htm [13] 修洪文. 松辽盆地北部泉三四段成岩研究与储层评价[D]. 大庆: 大庆石油学院, 2008.XIU Hongwen. Diagenesis research and reservoir evaluation in Quan3 and Quan4 members of northern Songliao Basin[D]. Daqing: Daqing Petroleum Institute, 2008. [14] 陈思芮, 曲希玉, 李吉君, 等. 泥页岩热演化所排有机酸对长石的溶蚀作用: 以大民屯凹陷沙四段为例[J]. 中国科技论文, 2019, 14(1): 113-120. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201901020.htmCHEN Sirui, QU Xiyu, LI Jijun, et al. Experimental study on the effect of organic acid on feldspar dissolution by thermal evolution of shale: a case from the fourth member of Shahejie Formation in Damintun Depression[J]. China Sciencepaper, 2019, 14(1): 113-120. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201901020.htm [15] 黄可可, 黄思静, 佟宏鹏, 等. 长石溶解过程的热力学计算及其在碎屑岩储层研究中的意义[J]. 地质通报, 2009, 28(4): 474-482. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200904010.htmHUANG Keke, HUANG Sijing, TONG Hongpeng, et al. Thermodynamic calculation of feldspar dissolution and its significance on research of clastic reservoir[J]. Geological Bulletin of China, 2009, 28(4): 474-482. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200904010.htm [16] 李波, 颜佳新, 刘喜停, 等. 白云岩有机成因模式: 机制、进展与意义[J]. 古地理学报, 2010, 12(6): 699-710. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201006009.htmLI Bo, YAN Jiaxin, LIU Xiting, et al. The organogenic dolomite model: mechanism, progress and significance[J]. Journal of Palaeogeography, 2010, 12(6): 699-710. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201006009.htm [17] FANG Yihang, XU Huifang. Study of an Ordovician carbonate with alternating dolomite-calcite laminations and its implication for catalytic effects of microbes on the formation of sedimentary dolomite[J]. Journal of Sedimentary Research, 2018, 88(6): 679-695. [18] 付金华, 王宝清, 孙六一, 等. 鄂尔多斯盆地苏里格地区奥陶系马家沟组白云石化[J]. 石油实验地质, 2011, 33(3): 266-273. doi: 10.11781/sysydz201103266FU Jinhua, WANG Baoqing, SUN Liuyi, et al. Dolomitization of Ordovician Majiagou Formation in Sulige region, Ordos Basin[J]. Petroleum Geology & Experiment, 2011, 33(3): 266-273. doi: 10.11781/sysydz201103266 [19] 侯中帅, 陈世悦. 东营凹陷沙四段上亚段-沙三段下亚段泥页岩成岩演化及其对储层发育的影响[J]. 油气地质与采收率, 2019, 26(1): 119-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901013.htmHOU Zhongshuai, CHEN Shiyue. Diagenesis evolution characte-ristics of shale in Upper Es4 to Lower Es3 members in Dongying Sag and its influence on the formation of reservoir[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 119-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901013.htm [20] 曹涛涛, 邓模, 宋之光, 等. 黄铁矿对页岩油气富集成藏影响研究[J]. 天然气地球科学, 2018, 29(3): 404-414. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201803011.htmCAO Taotao, DENG Mo, SONG Zhiguang, et al. Study on the effect of pyrite on the accumulation of shale oil and gas[J]. Natural Gas Geoscience, 2018, 29(3): 404-414. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201803011.htm [21] 刘子驿. 湘鄂西五峰-龙马溪组黄铁矿成因及其页岩气意义[D]. 北京: 中国地质大学(北京), 2017.LIU Ziyi. Shale gas significance of pyrite in Wufeng-Longmaxi formations, case study in western Hunan and Hubei[D]. Beijing: China University of Geosciences (Beijing), 2017. [22] 赵杏媛, 何东博. 黏土矿物与页岩气[J]. 新疆石油地质, 2012, 33(6): 643-647. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201206004.htmZHAO Xingyuan, HE Dongbo. Clay minerals and shale gas[J]. Xinjiang Petroleum Geology, 2012, 33(6): 643-647. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201206004.htm [23] 王行信, 辛国强, 冯永才. 松辽盆地粘土矿物研究[M]. 哈尔滨: 黑龙江科学技术出版社, 1990.WANG Xingxin, XIN Guoqiang, FENG Yongcai. Clay minerals research of Songliao Basin[M]. Harbin: Heilongjiang Science and Technology Press, 1990. [24] 李颖莉, 蔡进功. 泥质烃源岩中蒙脱石伊利石化对页岩气赋存的影响[J]. 石油实验地质, 2014, 36(3): 352-358. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201403015.htmLI Yingli, CAI Jingong. Effect of smectite illitization on shale gas occurrence in argillaceous source rocks[J]. Petroleum Geology & Experiment, 2014, 36(3): 352-358. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201403015.htm