留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鄂尔多斯盆地南部张家滩油页岩生烃演化特征

高波 武晓玲 张英 陈新军 边瑞康 李倩文

高波, 武晓玲, 张英, 陈新军, 边瑞康, 李倩文. 鄂尔多斯盆地南部张家滩油页岩生烃演化特征[J]. 石油实验地质, 2022, 44(1): 24-32. doi: 10.11781/sysydz202201024
引用本文: 高波, 武晓玲, 张英, 陈新军, 边瑞康, 李倩文. 鄂尔多斯盆地南部张家滩油页岩生烃演化特征[J]. 石油实验地质, 2022, 44(1): 24-32. doi: 10.11781/sysydz202201024
GAO Bo, WU Xiaoling, ZHANG Ying, CHEN Xinjun, BIAN Ruikang, LI Qianwen. Hydrocarbon generation and evolution characteristics of Triassic Zhangjiatan oil shale in southern Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(1): 24-32. doi: 10.11781/sysydz202201024
Citation: GAO Bo, WU Xiaoling, ZHANG Ying, CHEN Xinjun, BIAN Ruikang, LI Qianwen. Hydrocarbon generation and evolution characteristics of Triassic Zhangjiatan oil shale in southern Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(1): 24-32. doi: 10.11781/sysydz202201024

鄂尔多斯盆地南部张家滩油页岩生烃演化特征

doi: 10.11781/sysydz202201024
基金项目: 

国家科技重大专项 2017ZX05036-004-004

中国石化科技开发部项目 P20049-1

详细信息
    作者简介:

    高波(1969-), 男, 博士, 研究员, 从事非常规油气地质、地球化学研究。E-mail: gaobo.syky@sinopec.com

  • 中图分类号: TE122.1

Hydrocarbon generation and evolution characteristics of Triassic Zhangjiatan oil shale in southern Ordos Basin

  • 摘要: 鄂尔多斯盆地南部上三叠统延长组张家滩油页岩不仅是重要的固体矿产资源,也是该盆地三叠系油气的主力烃源岩。对张家滩油页岩典型露头剖面、钻井岩心进行有机碳含量(TOC)、氯仿沥青“A”及族组分、含油率等相关测试分析表明,张家滩油页岩有机质丰度高,TOC介于5.11%~36.47%,平均16.15%,生烃潜量(S0+S1+S2)介于16.58~230.98 mg/g,平均94.20 mg/g,氯仿沥青“A”介于0.42%~2.22%之间,平均1.25%,属于生烃条件极好的优质烃源岩;含油率高,介于3.52%~14.6%之间,平均8.16%,属于中高品质的油页岩;干酪根类型以Ⅰ—Ⅱ1型为主,Ro介于0.43%~1.09%。综合利用野外露头剖面和钻井岩心样品,建立了盆地南部张家滩油页岩的热演化剖面,分析了氯仿抽提前、后油页岩的含油率变化及油页岩热演化过程中含油率、热解烃产物的变化特征,揭示鄂尔多斯盆地南部张家滩油页岩具有聚集油页岩、页岩油两类资源的潜力,提出了相应的勘探开发对策。

     

  • 图  1  鄂尔多斯盆地南部张家滩油页岩厚度分布

    据文献[15]修改。

    Figure  1.  Thickness of Zhangjiatan oil shale in southern Ordos Basin

    图  2  鄂尔多斯盆地南部张家滩油页岩最高热解峰温(Tmax)与氢指数(IH)关系

    青山口组、嫩江组和桦甸组油页岩数据据文献[19]。

    Figure  2.  IH vs. Tmax diagram indicating kerogen types and maturity range of Zhangjiatan oil shale in southern Ordos Basin

    图  3  鄂尔多斯盆地南部张家滩油页岩与陆相页岩储层矿物组分对比

    图中张家滩油页岩来自何家坊地区,长7段页岩和山1段页岩数据据文献[22]。

    Figure  3.  Mineral composition of Zhangjiatan oil shale and continental shale reservoir in southern Ordos Basin

    图  4  鄂尔多斯盆地南部张家滩油页岩含油率和含硫量分布

    Figure  4.  Distribution of oil and sulfur contents of Zhangjiatan oil shale in southern Ordos Basin

    图  5  鄂尔多斯盆地南部张家滩油页岩抽提前、后含油率随Ro变化对比

    Figure  5.  Comparison of oil content with Ro before and after extraction of Zhangjiatan oil shale in southern Ordos Basin

    图  6  鄂尔多斯盆地南部张家滩油页岩含油率与相关参数关系

    Figure  6.  Relationship between oil content and related parameters of Zhangjiatan oil shale in southern Ordos Basin

    图  7  鄂尔多斯盆地张家滩油页岩自然剖面的热演化特征

    Figure  7.  Thermal evolution characteristics of natural profile of Zhangjiatan oil shale in Ordos Basin

    图  8  鄂尔多斯盆地南部张家滩油页岩与页岩油资源分布

    Figure  8.  Distribution of Zhangjiatan oil shale and shale oil resources in southern Ordos Basin

    表  1  鄂尔多斯盆地南部张家滩油页岩地球化学特征统计

    Table  1.   Geochemical characteristics of Zhangjiatan oil shale in southern Ordos Basin

    地区 剖面/探井 ω(TOC)/% ω(S)/% (S0+S1+S2)/(mg·g-1) 氯仿沥青“A”/% IH/(mg·g-1) Tmax/℃ Ro/%
    旬宜 福地 $ \frac{{15.74\sim 27.74}}{{20.37(3)}}$ $ \frac{{0.45\sim 2.69}}{{1.31(3)}}$ $ \frac{{78.38\sim 105.57}}{{90.82(3)}}$ $ \frac{{0.93\sim 1.06}}{{1.01(3)}}$ $ \frac{{312\sim 576}}{{459(3)}}$ $ \frac{{432\sim 440}}{{437(3)}}$ $ \frac{{0.63\sim 0.68}}{{0.66(3)}}$
    霸王庄 $ \frac{{26.72\sim 36.47}}{{31.60(2)}}$ $ \frac{{2.81\sim 5.88}}{{4.35(2)}}$ $ \frac{{167.39\sim 230.98}}{{199.18(2)}}$ $ \frac{{1.52\sim 1.71}}{{1.62(2)}}$ $ \frac{{428\sim 815}}{{622(2)}}$ $ \frac{{433\sim 439}}{{436(2)}}$ $ \frac{{0.54\sim 0.59}}{{0.57(2)}}$
    何家坊 20.19 3.42 116.19 1.48 550 430 0.59
    前烈桥 27.08 0.61 122.29 0.72 436 430 0.51
    阎曲河 8.34 2.04 42.93 0.42 486 425 0.69
    贾曲河 9.35 1.19 35.42 0.51 363 428 0.43
    聂家河 $ \frac{{20.91\sim 33.71}}{{28.04(3)}}$ $ \frac{{0.82\sim 2.57}}{{1.53(3)}}$ $ \frac{{61.04\sim 150.87}}{{120.00(3)}}$ $ \frac{{0.46\sim 1.82}}{{1.27(3)}}$ $ \frac{{283\sim 485}}{{394(3)}}$ $ \frac{{426\sim 432}}{{430(3)}}$ $ \frac{{0.44\sim 0.47}}{{0.46(3)}}$
    彬长 水北沟 $ \frac{{9.60\sim 9.95}}{{9.78(2)}}$ $ \frac{{0.75\sim 0.97}}{{0.86(2)}}$ $ \frac{{67.1\sim 159.99}}{{113.54(2)}}$ $ \frac{{0.83\sim 1.15}}{{0.99(2)}}$ $ \frac{{680\sim 1467}}{{1074(2)}}$ $ \frac{{432\sim 433}}{{433(2)}}$ $ \frac{{0.42\sim 0.43}}{{0.43(2)}}$
    JH4井 10.00 2.93 59.38 1.63 549 433 0.74
    JH6井 17.77 2.98 104.45 1.53 555 434 0.72
    JH60井 $ \frac{{7.40\sim 22.81}}{{13.13(3)}}$ $ \frac{{1.55\sim 2.32}}{{2.03(3)}}$ $ \frac{{57.60\sim 206.38}}{{113.67(3)}}$ $ \frac{{1.33\sim 1.66}}{{1.54(3)}}$ $ \frac{{757\sim 871}}{{799(3)}}$ $ \frac{{438\sim 439}}{{439(3)}}$ $ \frac{{0.6\sim 0.7}}{{>0.65(3)}}$3
    镇泾 HH12井 13.75 2.17 114.17 1.22 780 443 0.61
    HH151井 6.24 0.55 46.30 1.24 730 448 0.67
    HH157井 5.44 0.44 42.00 1.05 733 446 0.7
    HH159井 6.41 1.58 39.01 1.07 574 438 0.74
    富县 LH2井 6.81 2.39 16.58 1.54 202 449 0.84
    ZF25井 5.11 0.49 17.42 2.22 275 455 1.09
    范围及平均值 $ \frac{{5.11\sim 36.47}}{{16.15(25)}}$ $ \frac{{0.44\sim 5.88}}{{1.83(25)}}$ $ \frac{{16.58\sim 230.98}}{{94.20(25)}}$ $ \frac{{0.42\sim 2.22}}{{1.25(25)}}$ $ \frac{{202\sim 1467}}{{583(25)}}$ $ \frac{{425\sim 455}}{{437(25)}}$ $ \frac{{0.42\sim 1.09}}{{0.63(25)}}$
    注: 表中分式意义为$ \frac{{\left( {{\rm{最小值}}\sim {\rm{最大值}}} \right)}}{{\rm{平均值}}({\rm{样品数}})}$ 。
    下载: 导出CSV

    表  2  鄂尔多斯盆地南部张家滩油页岩测试分析统计

    Table  2.   Testing data of Zhangjiatan oil shale in southern Ordos Basin

    样品来源 样号 ω(TOC)/% S0/(mg·g-1) S1/(mg·g-1) S2/(mg·g-1) (S0+S1+S2)/(mg·g-1) 氯仿沥青“A”/% 饱和烃/% 芳烃/% 非烃/% 沥青质/% 含油率/% Ro/% Tmax/℃
    抽提前 抽提后
    水北沟 SBG1 9.95 0.53 13.45 146.01 159.99 1.154 37.63 23.14 34.96 4.27 14.38 4.25 0.43 432
    聂家河 NJH3 33.71 0.33 7.85 139.90 148.08 1.542 38.98 9.06 44.48 7.48 12.50 5.45 0.46 426
    聂家河 NJH2 29.51 0.27 7.51 143.10 150.87 1.822 45.02 13.42 38.53 3.03 9.57 3.66 0.47 432
    霸王庄 BWZ2 36.47 0.62 10.72 156.06 167.39 1.522 33.87 15.08 49.94 1.11 14.60 4.28 0.54 439
    霸王庄 BWZ4 26.72 0.44 12.67 217.87 230.98 1.714 34.53 19.37 41.05 5.05 13.10 4.16 0.59 433
    红河 HH12 13.75 0.45 6.51 107.22 114.17 1.222 32.96 33.79 25.43 7.82 11.35 3.05 0.61 443
    泾河 JH60 22.81 0.91 6.89 198.58 206.38 1.663 33.15 20.66 38.08 8.11 12.35 2.42 0.63 439
    福地 FD2 17.64 0.09 3.80 101.67 105.57 1.056 36.91 22.47 31.34 9.28 8.65 2.51 0.68 440
    泾河 JH6 17.77 0.17 5.59 98.68 104.45 1.530 55.42 23.87 19.13 1.58 10.27 2.75 0.72 434
    泾河 JH4 10.00 0.15 4.31 54.92 59.38 1.632 42.23 26.07 30.48 1.22 8.24 1.79 0.74 433
    洛河 LH2 6.81 0.15 2.67 13.76 16.58 1.541 59.41 21.15 15.81 3.63 6.14 1.85 0.84 449
    富县 ZF25 5.11 0.18 3.21 14.04 17.42 2.221 64.72 17.38 11.88 6.02 6.35 0.89 1.09 455
    下载: 导出CSV
  • [1] 刘招君, 杨虎林, 董清水, 等. 中国油页岩[M]. 北京: 石油工业出版社, 2009.

    LIU Zhaojun, YANG Hulin, DONG Qingshui, et al. Oil shale in China[M]. Beijing: Petroleum Industry Press, 2009.
    [2] 刘德勋, 王红岩, 郑德温, 等. 世界油页岩原位开采技术进展[J]. 天然气工业, 2009, 29(5): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200905041.htm

    LIU Dexun, WANG Hongyan, ZHENG Dewen, et al. World progress of oil shale in-situ exploitation methods[J]. Natural Gas Industry, 2009, 29(5): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200905041.htm
    [3] FOWLER T D, VINEGAR H J. Oil shale ICP-colorado field pilots[R]. San Jose: SPE, 2009.
    [4] 刘洪林, 刘德勋, 方朝合, 等. 利用微波加热开采地下油页岩的技术[J]. 石油学报, 2010, 31(4): 623-625. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201004017.htm

    LIU Honglin, LIU Dexun, FANG Chaohe, et al. Microwave heating technology of in-situ oil shale developing[J]. Acta Petrolei Sinica, 2010, 31(4): 623-625. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201004017.htm
    [5] 汪友平, 王益维, 孟祥龙, 等. 美国油页岩原位开采技术与启示[J]. 石油钻采工艺, 2013, 35(6): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201306015.htm

    WANG Youping, WANG Yiwei, MENG Xianglong, et al. Enlightenment of American's oil shale in-situ retorting technology[J]. Oil Drilling & Production Technology, 2013, 35(6): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201306015.htm
    [6] ALPAK F O, VINK J C, GAO Guohua, et al. Techniques for effective simulation, optimization, and uncertainty quantification of the in-situ upgrading process[C]//Proceedings of SPE Reservoir Simulation Symposium. Texas: SPE, 2013.
    [7] 柳波, 刘阳, 刘岩, 等. 低熟页岩电加热原位改质油气资源潜力数值模拟: 以松辽盆地南部中央坳陷区嫩江组一、二段为例[J]. 石油实验地质, 2020, 42(4): 533-544. doi: 10.11781/sysydz202004533

    LIU Bo, LIU Yang, LIU Yan, et al. Prediction of low-maturity shale oil produced by in situ conversion: a case study of the first and second members of Nenjiang Formation in the Central Depression, southern Songliao Basin, Northeast China[J]. Petroleum Geology & Experiment, 2020, 42(4): 533-544. doi: 10.11781/sysydz202004533
    [8] 赵康安, 孙平昌, 于丰宁, 等. 民和盆地油页岩加热过程储集物性研究[J]. 新疆石油地质, 2020, 41(2): 158-163. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202002005.htm

    ZHAO Kang'an, SUN Pingchang, YU Fengning, et al. Study on reservoir physical properties of oil shale during heating in Minhe basin[J]. Xinjiang Petroleum Geology, 2020, 41(2): 158-163. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202002005.htm
    [9] 金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm

    JIN Zhijun, BAI Zhenrui, GAO Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm
    [10] 付锁堂, 姚泾利, 李士祥, 等. 鄂尔多斯盆地中生界延长组陆相页岩油富集特征与资源潜力[J]. 石油实验地质, 2020, 42(5): 698-710. doi: 10.11781/sysydz202005698

    FU Suotang, YAO Jingli, LI Shixiang, et al. Enrichment characteristics and resource potential of continental shale oil in Mesozoic Yanchang Formation, Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(5): 698-710. doi: 10.11781/sysydz202005698
    [11] 李士祥, 牛小兵, 柳广弟, 等. 鄂尔多斯盆地延长组长7段页岩油形成富集机理[J]. 石油与天然气地质, 2020, 41(4): 719-729. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004007.htm

    Li Shixiang, Niu Xiaobing, Liu Guangdi, et al. Formation and accumulation mechanism of shale oil in the 7th member of Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2020, 41(4): 719-729. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004007.htm
    [12] 黎茂稳, 金之钧, 董明哲, 等. 陆相页岩形成演化与页岩油富集机理研究进展[J]. 石油实验地质, 2020, 42(4): 489-505. doi: 10.11781/sysydz202004489

    LI Maowen, JIN Zhijun, DONG Mingzhe, et al. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. Petroleum Geology & Experiment, 2020, 42(4): 489-505. doi: 10.11781/sysydz202004489
    [13] 林会喜, 王圣柱, 杨艳艳, 等. 博格达地区中二叠统芦草沟组页岩油储集特征[J]. 断块油气田, 2020, 27(4): 418-423. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202004004.htm

    LIN Huixi, WANG Shengzhu, YANG Yanyan, et al. Shale oil reservoir characteristics of Middle Permian Lucaogou Formation in Bogda area[J]. Fault-Block Oil and Gas Field, 2020, 27(4): 418-423. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202004004.htm
    [14] 国土资源部油气资源战略研究中心. 全国页岩气资源潜力调查评价及有利区优选[M]. 北京: 科学出版社, 2016: 198-215.

    Strategic Research Center of oil and Gas Resources, Ministry of Land and Resources. National shale gas resource potential survey and evaluation and favorable area selection[M]. Beijing: Science Press, 2016: 198-215.
    [15] 邓南涛, 张枝焕, 任来义, 等. 鄂尔多斯盆地南部延长组油页岩地球化学特征及分布规律[J]. 石油实验地质, 2013, 35(4): 432-437. doi: 10.11781/sysydz201304432

    DENG Nantao, ZHANG Zhihuan, REN Laiyi, et al. Geochemical characteristics and distribution rules of oil shale from Yanchang Formation, southern Ordos Basin[J]. Petroleum Geology & Experiment, 2013, 35(4): 432-437. doi: 10.11781/sysydz201304432
    [16] 马中豪, 陈清石, 史忠汪, 等. 鄂尔多斯盆地南缘延长组长7油页岩地球化学特征及其地质意义[J]. 地质通报, 2016, 35(9): 1550-1558. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201609021.htm

    MA Zhonghao, CHEN Qingshi, SHI Zhongwang, et al. Geoche-mistry of oil shale from Chang 7 reservoir of Yanchang Formation in south Ordos Basin and its geological significance[J]. Geological Bulletin of China, 2016, 35(9): 1550-1558. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201609021.htm
    [17] 侯读杰, 张善文, 肖建新, 等. 济阳坳陷优质烃源岩特征与隐蔽油气藏的关系分析[J]. 地学前缘, 2008, 15(2): 137-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802018.htm

    HOU Dujie, ZHANG Shanwen, XIAO Jianxin, et al. The excellent source rocks and accumulation of stratigraphic and lithologic traps in the Jiyang Depression, Bohai Bay Basin, China[J]. Earth Science Frontiers, 2008, 15(2): 137-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802018.htm
    [18] 卢双舫, 马延伶, 曹瑞成, 等. 优质烃源岩评价标准及其应用: 以海拉尔盆地乌尔逊凹陷为例[J]. 地球科学(中国地质大学学报), 2012, 37(3): 535-544. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201203017.htm

    LU Shuangfang, MA Yanling, CAO Ruicheng, et al. Evaluation criteria of high-quality source rocks and its applications: taking the Wuerxun Sag in Hailaer Basin as an example[J]. Earth Science(Journal of China University of Geosciences), 2012, 37(3): 535-544. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201203017.htm
    [19] 刘招君, 柳蓉, 孙平昌, 等. 中国典型盆地油页岩特征及赋存规律[J]. 吉林大学学报(地球科学版), 2020, 50(2): 313-325. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202002002.htm

    LIU Zhaojun, LIU Rong, SUN Pingchang, et al. Oil shale characte-ristics and distribution in typical basins of China[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 313-325. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202002002.htm
    [20] 邬立言, 顾信章, 盛志纬, 等. 生油岩热解快速定量评价[M]. 北京: 科学出版社, 1986.

    WU Liyan, GU Xinzhang, SHENG Zhiwei, et al. Rapid quantitative evaluation of source rock pyrolysis[M]. Beijing: Science Press, 1986.
    [21] 王香增. 延长石油集团非常规天然气勘探开发进展[J]. 石油学报, 2016, 37(1): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601016.htm

    WANG Xiangzeng. Advances in unconventional gas exploration and development of Yanchang petroleum group[J]. Acta Petrolei Sinica, 2016, 37(1): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601016.htm
    [22] 杜燕, 刘超, 高潮, 等. 鄂尔多斯盆地延长探区陆相页岩气勘探开发进展、挑战与展望[J]. 中国石油勘探, 2020, 25(2): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202002004.htm

    DU Yan, LIU Chao, GAO Chao, et al. Progress, challenges and prospects of the continental shale gas exploration and development in the Yanchang exploration area of the Ordos Basin[J]. China Petroleum Exploration, 2020, 25(2): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202002004.htm
    [23] 马中良, 郑伦举, 赵中熙. 不同边界条件对油页岩原位转化开采的影响及启示[J]. 吉林大学学报(地球科学版), 2017, 47(2): 431-441. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201702010.htm

    MA Zhongliang, ZHENG Lunju, ZHAO Zhongxi. Influence and its revelation of oil shale in-situ mining simulation in different boundary conditions[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(2): 431-441. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201702010.htm
    [24] 赵文智, 胡素云, 侯连华. 页岩油地下原位转化的内涵与战略地位[J]. 石油勘探与开发, 2018, 45(4): 537-545. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804001.htm

    ZHAO Wenzhi, HU Suyun, HOU Lianhua. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China[J]. Petroleum Exploration and Development, 2018, 45(4): 537-545. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804001.htm
    [25] 付金华, 刘显阳, 李士祥, 等. 鄂尔多斯盆地三叠系延长组长7段页岩油勘探发现与资源潜力[J]. 中国石油勘探, 2021, 26(5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202105001.htm

    FU Jinhua, LIU Xianyang, LI Shixiang, et al. Discovery and resource potential of shale oil of Chang 7 member, Triassic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2021, 26(5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202105001.htm
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  834
  • HTML全文浏览量:  215
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 修回日期:  2021-11-30
  • 刊出日期:  2022-01-28

目录

    /

    返回文章
    返回