Hydrocarbon generation and evolution characteristics of Triassic Zhangjiatan oil shale in southern Ordos Basin
-
摘要: 鄂尔多斯盆地南部上三叠统延长组张家滩油页岩不仅是重要的固体矿产资源,也是该盆地三叠系油气的主力烃源岩。对张家滩油页岩典型露头剖面、钻井岩心进行有机碳含量(TOC)、氯仿沥青“A”及族组分、含油率等相关测试分析表明,张家滩油页岩有机质丰度高,TOC介于5.11%~36.47%,平均16.15%,生烃潜量(S0+S1+S2)介于16.58~230.98 mg/g,平均94.20 mg/g,氯仿沥青“A”介于0.42%~2.22%之间,平均1.25%,属于生烃条件极好的优质烃源岩;含油率高,介于3.52%~14.6%之间,平均8.16%,属于中高品质的油页岩;干酪根类型以Ⅰ—Ⅱ1型为主,Ro介于0.43%~1.09%。综合利用野外露头剖面和钻井岩心样品,建立了盆地南部张家滩油页岩的热演化剖面,分析了氯仿抽提前、后油页岩的含油率变化及油页岩热演化过程中含油率、热解烃产物的变化特征,揭示鄂尔多斯盆地南部张家滩油页岩具有聚集油页岩、页岩油两类资源的潜力,提出了相应的勘探开发对策。Abstract: The Zhangjiatan oil shale from the Upper Triassic Yanchang Formation in the southern Ordos Basin is an important solid mineral resource, it can also be considered as the main source rock of Triassic oil and gas in the basin. Results of analytical experiments such as TOC, bitumen extraction and group composition, oil content etc. of shale samples from key typical outcrop sections and drilling cores showed that the Zhangjiatan oil shale has a high organic matter abundance. The TOC content ranges 5.11% to 36.47%, with an average value of 16.15%. The S0+S1+S2 value distributes between 16.58-230.98 mg/g, with an average value of 94.20 mg/g. The extracted bitumen abundance is between 0.42%-2.22%, with an average value of 1.25%. Based on these analytical results, Zhangjiatan oil shale can be assigned to be high-quality source rock with an excellent hydrocarbon generation potential. The oil content of oil shale is between 3.52% and 14.6%, with an average value of 8.16%, which belongs to medium- and high-quality oil shale. The kerogen type is mainly Ⅰ-Ⅱ1, and the Ro value generally ranges from 0.43% to 1.09%. Based on field outcrop and drilling core samples, a thermal evolution profile of the Zhangjiatan oil shale in the southern Ordos Basin was established. Moreover, the oil contents of oil shale before and after solvent extraction were compared, and the variations of oil content and pyrolysis hydrocarbon products during the thermal evolution of oil shale were analyzed. There are two types of resources such as oil shale and shale oil in the Zhangjiatan oil shale with a great potential in the southern Ordos Basin. Moreover, some exploration and development countermeasures of oil shale and shale oil were put forward.
-
Key words:
- thermal evolution /
- shale oil /
- Zhangjiatan oil shale /
- Yanchang Formation /
- Upper Triassic /
- southern Ordos Basin
-
图 1 鄂尔多斯盆地南部张家滩油页岩厚度分布
据文献[15]修改。
Figure 1. Thickness of Zhangjiatan oil shale in southern Ordos Basin
图 2 鄂尔多斯盆地南部张家滩油页岩最高热解峰温(Tmax)与氢指数(IH)关系
青山口组、嫩江组和桦甸组油页岩数据据文献[19]。
Figure 2. IH vs. Tmax diagram indicating kerogen types and maturity range of Zhangjiatan oil shale in southern Ordos Basin
图 3 鄂尔多斯盆地南部张家滩油页岩与陆相页岩储层矿物组分对比
图中张家滩油页岩来自何家坊地区,长7段页岩和山1段页岩数据据文献[22]。
Figure 3. Mineral composition of Zhangjiatan oil shale and continental shale reservoir in southern Ordos Basin
表 1 鄂尔多斯盆地南部张家滩油页岩地球化学特征统计
Table 1. Geochemical characteristics of Zhangjiatan oil shale in southern Ordos Basin
地区 剖面/探井 ω(TOC)/% ω(S)/% (S0+S1+S2)/(mg·g-1) 氯仿沥青“A”/% IH/(mg·g-1) Tmax/℃ Ro/% 旬宜 福地 $ \frac{{15.74\sim 27.74}}{{20.37(3)}}$ $ \frac{{0.45\sim 2.69}}{{1.31(3)}}$ $ \frac{{78.38\sim 105.57}}{{90.82(3)}}$ $ \frac{{0.93\sim 1.06}}{{1.01(3)}}$ $ \frac{{312\sim 576}}{{459(3)}}$ $ \frac{{432\sim 440}}{{437(3)}}$ $ \frac{{0.63\sim 0.68}}{{0.66(3)}}$ 霸王庄 $ \frac{{26.72\sim 36.47}}{{31.60(2)}}$ $ \frac{{2.81\sim 5.88}}{{4.35(2)}}$ $ \frac{{167.39\sim 230.98}}{{199.18(2)}}$ $ \frac{{1.52\sim 1.71}}{{1.62(2)}}$ $ \frac{{428\sim 815}}{{622(2)}}$ $ \frac{{433\sim 439}}{{436(2)}}$ $ \frac{{0.54\sim 0.59}}{{0.57(2)}}$ 何家坊 20.19 3.42 116.19 1.48 550 430 0.59 前烈桥 27.08 0.61 122.29 0.72 436 430 0.51 阎曲河 8.34 2.04 42.93 0.42 486 425 0.69 贾曲河 9.35 1.19 35.42 0.51 363 428 0.43 聂家河 $ \frac{{20.91\sim 33.71}}{{28.04(3)}}$ $ \frac{{0.82\sim 2.57}}{{1.53(3)}}$ $ \frac{{61.04\sim 150.87}}{{120.00(3)}}$ $ \frac{{0.46\sim 1.82}}{{1.27(3)}}$ $ \frac{{283\sim 485}}{{394(3)}}$ $ \frac{{426\sim 432}}{{430(3)}}$ $ \frac{{0.44\sim 0.47}}{{0.46(3)}}$ 彬长 水北沟 $ \frac{{9.60\sim 9.95}}{{9.78(2)}}$ $ \frac{{0.75\sim 0.97}}{{0.86(2)}}$ $ \frac{{67.1\sim 159.99}}{{113.54(2)}}$ $ \frac{{0.83\sim 1.15}}{{0.99(2)}}$ $ \frac{{680\sim 1467}}{{1074(2)}}$ $ \frac{{432\sim 433}}{{433(2)}}$ $ \frac{{0.42\sim 0.43}}{{0.43(2)}}$ JH4井 10.00 2.93 59.38 1.63 549 433 0.74 JH6井 17.77 2.98 104.45 1.53 555 434 0.72 JH60井 $ \frac{{7.40\sim 22.81}}{{13.13(3)}}$ $ \frac{{1.55\sim 2.32}}{{2.03(3)}}$ $ \frac{{57.60\sim 206.38}}{{113.67(3)}}$ $ \frac{{1.33\sim 1.66}}{{1.54(3)}}$ $ \frac{{757\sim 871}}{{799(3)}}$ $ \frac{{438\sim 439}}{{439(3)}}$ $ \frac{{0.6\sim 0.7}}{{>0.65(3)}}$3 镇泾 HH12井 13.75 2.17 114.17 1.22 780 443 0.61 HH151井 6.24 0.55 46.30 1.24 730 448 0.67 HH157井 5.44 0.44 42.00 1.05 733 446 0.7 HH159井 6.41 1.58 39.01 1.07 574 438 0.74 富县 LH2井 6.81 2.39 16.58 1.54 202 449 0.84 ZF25井 5.11 0.49 17.42 2.22 275 455 1.09 范围及平均值 $ \frac{{5.11\sim 36.47}}{{16.15(25)}}$ $ \frac{{0.44\sim 5.88}}{{1.83(25)}}$ $ \frac{{16.58\sim 230.98}}{{94.20(25)}}$ $ \frac{{0.42\sim 2.22}}{{1.25(25)}}$ $ \frac{{202\sim 1467}}{{583(25)}}$ $ \frac{{425\sim 455}}{{437(25)}}$ $ \frac{{0.42\sim 1.09}}{{0.63(25)}}$ 注: 表中分式意义为$ \frac{{\left( {{\rm{最小值}}\sim {\rm{最大值}}} \right)}}{{\rm{平均值}}({\rm{样品数}})}$ 。 表 2 鄂尔多斯盆地南部张家滩油页岩测试分析统计
Table 2. Testing data of Zhangjiatan oil shale in southern Ordos Basin
样品来源 样号 ω(TOC)/% S0/(mg·g-1) S1/(mg·g-1) S2/(mg·g-1) (S0+S1+S2)/(mg·g-1) 氯仿沥青“A”/% 饱和烃/% 芳烃/% 非烃/% 沥青质/% 含油率/% Ro/% Tmax/℃ 抽提前 抽提后 水北沟 SBG1 9.95 0.53 13.45 146.01 159.99 1.154 37.63 23.14 34.96 4.27 14.38 4.25 0.43 432 聂家河 NJH3 33.71 0.33 7.85 139.90 148.08 1.542 38.98 9.06 44.48 7.48 12.50 5.45 0.46 426 聂家河 NJH2 29.51 0.27 7.51 143.10 150.87 1.822 45.02 13.42 38.53 3.03 9.57 3.66 0.47 432 霸王庄 BWZ2 36.47 0.62 10.72 156.06 167.39 1.522 33.87 15.08 49.94 1.11 14.60 4.28 0.54 439 霸王庄 BWZ4 26.72 0.44 12.67 217.87 230.98 1.714 34.53 19.37 41.05 5.05 13.10 4.16 0.59 433 红河 HH12 13.75 0.45 6.51 107.22 114.17 1.222 32.96 33.79 25.43 7.82 11.35 3.05 0.61 443 泾河 JH60 22.81 0.91 6.89 198.58 206.38 1.663 33.15 20.66 38.08 8.11 12.35 2.42 0.63 439 福地 FD2 17.64 0.09 3.80 101.67 105.57 1.056 36.91 22.47 31.34 9.28 8.65 2.51 0.68 440 泾河 JH6 17.77 0.17 5.59 98.68 104.45 1.530 55.42 23.87 19.13 1.58 10.27 2.75 0.72 434 泾河 JH4 10.00 0.15 4.31 54.92 59.38 1.632 42.23 26.07 30.48 1.22 8.24 1.79 0.74 433 洛河 LH2 6.81 0.15 2.67 13.76 16.58 1.541 59.41 21.15 15.81 3.63 6.14 1.85 0.84 449 富县 ZF25 5.11 0.18 3.21 14.04 17.42 2.221 64.72 17.38 11.88 6.02 6.35 0.89 1.09 455 -
[1] 刘招君, 杨虎林, 董清水, 等. 中国油页岩[M]. 北京: 石油工业出版社, 2009.LIU Zhaojun, YANG Hulin, DONG Qingshui, et al. Oil shale in China[M]. Beijing: Petroleum Industry Press, 2009. [2] 刘德勋, 王红岩, 郑德温, 等. 世界油页岩原位开采技术进展[J]. 天然气工业, 2009, 29(5): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200905041.htmLIU Dexun, WANG Hongyan, ZHENG Dewen, et al. World progress of oil shale in-situ exploitation methods[J]. Natural Gas Industry, 2009, 29(5): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200905041.htm [3] FOWLER T D, VINEGAR H J. Oil shale ICP-colorado field pilots[R]. San Jose: SPE, 2009. [4] 刘洪林, 刘德勋, 方朝合, 等. 利用微波加热开采地下油页岩的技术[J]. 石油学报, 2010, 31(4): 623-625. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201004017.htmLIU Honglin, LIU Dexun, FANG Chaohe, et al. Microwave heating technology of in-situ oil shale developing[J]. Acta Petrolei Sinica, 2010, 31(4): 623-625. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201004017.htm [5] 汪友平, 王益维, 孟祥龙, 等. 美国油页岩原位开采技术与启示[J]. 石油钻采工艺, 2013, 35(6): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201306015.htmWANG Youping, WANG Yiwei, MENG Xianglong, et al. Enlightenment of American's oil shale in-situ retorting technology[J]. Oil Drilling & Production Technology, 2013, 35(6): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201306015.htm [6] ALPAK F O, VINK J C, GAO Guohua, et al. Techniques for effective simulation, optimization, and uncertainty quantification of the in-situ upgrading process[C]//Proceedings of SPE Reservoir Simulation Symposium. Texas: SPE, 2013. [7] 柳波, 刘阳, 刘岩, 等. 低熟页岩电加热原位改质油气资源潜力数值模拟: 以松辽盆地南部中央坳陷区嫩江组一、二段为例[J]. 石油实验地质, 2020, 42(4): 533-544. doi: 10.11781/sysydz202004533LIU Bo, LIU Yang, LIU Yan, et al. Prediction of low-maturity shale oil produced by in situ conversion: a case study of the first and second members of Nenjiang Formation in the Central Depression, southern Songliao Basin, Northeast China[J]. Petroleum Geology & Experiment, 2020, 42(4): 533-544. doi: 10.11781/sysydz202004533 [8] 赵康安, 孙平昌, 于丰宁, 等. 民和盆地油页岩加热过程储集物性研究[J]. 新疆石油地质, 2020, 41(2): 158-163. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202002005.htmZHAO Kang'an, SUN Pingchang, YU Fengning, et al. Study on reservoir physical properties of oil shale during heating in Minhe basin[J]. Xinjiang Petroleum Geology, 2020, 41(2): 158-163. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202002005.htm [9] 金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htmJIN Zhijun, BAI Zhenrui, GAO Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm [10] 付锁堂, 姚泾利, 李士祥, 等. 鄂尔多斯盆地中生界延长组陆相页岩油富集特征与资源潜力[J]. 石油实验地质, 2020, 42(5): 698-710. doi: 10.11781/sysydz202005698FU Suotang, YAO Jingli, LI Shixiang, et al. Enrichment characteristics and resource potential of continental shale oil in Mesozoic Yanchang Formation, Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(5): 698-710. doi: 10.11781/sysydz202005698 [11] 李士祥, 牛小兵, 柳广弟, 等. 鄂尔多斯盆地延长组长7段页岩油形成富集机理[J]. 石油与天然气地质, 2020, 41(4): 719-729. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004007.htmLi Shixiang, Niu Xiaobing, Liu Guangdi, et al. Formation and accumulation mechanism of shale oil in the 7th member of Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2020, 41(4): 719-729. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004007.htm [12] 黎茂稳, 金之钧, 董明哲, 等. 陆相页岩形成演化与页岩油富集机理研究进展[J]. 石油实验地质, 2020, 42(4): 489-505. doi: 10.11781/sysydz202004489LI Maowen, JIN Zhijun, DONG Mingzhe, et al. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. Petroleum Geology & Experiment, 2020, 42(4): 489-505. doi: 10.11781/sysydz202004489 [13] 林会喜, 王圣柱, 杨艳艳, 等. 博格达地区中二叠统芦草沟组页岩油储集特征[J]. 断块油气田, 2020, 27(4): 418-423. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202004004.htmLIN Huixi, WANG Shengzhu, YANG Yanyan, et al. Shale oil reservoir characteristics of Middle Permian Lucaogou Formation in Bogda area[J]. Fault-Block Oil and Gas Field, 2020, 27(4): 418-423. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202004004.htm [14] 国土资源部油气资源战略研究中心. 全国页岩气资源潜力调查评价及有利区优选[M]. 北京: 科学出版社, 2016: 198-215.Strategic Research Center of oil and Gas Resources, Ministry of Land and Resources. National shale gas resource potential survey and evaluation and favorable area selection[M]. Beijing: Science Press, 2016: 198-215. [15] 邓南涛, 张枝焕, 任来义, 等. 鄂尔多斯盆地南部延长组油页岩地球化学特征及分布规律[J]. 石油实验地质, 2013, 35(4): 432-437. doi: 10.11781/sysydz201304432DENG Nantao, ZHANG Zhihuan, REN Laiyi, et al. Geochemical characteristics and distribution rules of oil shale from Yanchang Formation, southern Ordos Basin[J]. Petroleum Geology & Experiment, 2013, 35(4): 432-437. doi: 10.11781/sysydz201304432 [16] 马中豪, 陈清石, 史忠汪, 等. 鄂尔多斯盆地南缘延长组长7油页岩地球化学特征及其地质意义[J]. 地质通报, 2016, 35(9): 1550-1558. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201609021.htmMA Zhonghao, CHEN Qingshi, SHI Zhongwang, et al. Geoche-mistry of oil shale from Chang 7 reservoir of Yanchang Formation in south Ordos Basin and its geological significance[J]. Geological Bulletin of China, 2016, 35(9): 1550-1558. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201609021.htm [17] 侯读杰, 张善文, 肖建新, 等. 济阳坳陷优质烃源岩特征与隐蔽油气藏的关系分析[J]. 地学前缘, 2008, 15(2): 137-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802018.htmHOU Dujie, ZHANG Shanwen, XIAO Jianxin, et al. The excellent source rocks and accumulation of stratigraphic and lithologic traps in the Jiyang Depression, Bohai Bay Basin, China[J]. Earth Science Frontiers, 2008, 15(2): 137-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802018.htm [18] 卢双舫, 马延伶, 曹瑞成, 等. 优质烃源岩评价标准及其应用: 以海拉尔盆地乌尔逊凹陷为例[J]. 地球科学(中国地质大学学报), 2012, 37(3): 535-544. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201203017.htmLU Shuangfang, MA Yanling, CAO Ruicheng, et al. Evaluation criteria of high-quality source rocks and its applications: taking the Wuerxun Sag in Hailaer Basin as an example[J]. Earth Science(Journal of China University of Geosciences), 2012, 37(3): 535-544. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201203017.htm [19] 刘招君, 柳蓉, 孙平昌, 等. 中国典型盆地油页岩特征及赋存规律[J]. 吉林大学学报(地球科学版), 2020, 50(2): 313-325. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202002002.htmLIU Zhaojun, LIU Rong, SUN Pingchang, et al. Oil shale characte-ristics and distribution in typical basins of China[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 313-325. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202002002.htm [20] 邬立言, 顾信章, 盛志纬, 等. 生油岩热解快速定量评价[M]. 北京: 科学出版社, 1986.WU Liyan, GU Xinzhang, SHENG Zhiwei, et al. Rapid quantitative evaluation of source rock pyrolysis[M]. Beijing: Science Press, 1986. [21] 王香增. 延长石油集团非常规天然气勘探开发进展[J]. 石油学报, 2016, 37(1): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601016.htmWANG Xiangzeng. Advances in unconventional gas exploration and development of Yanchang petroleum group[J]. Acta Petrolei Sinica, 2016, 37(1): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601016.htm [22] 杜燕, 刘超, 高潮, 等. 鄂尔多斯盆地延长探区陆相页岩气勘探开发进展、挑战与展望[J]. 中国石油勘探, 2020, 25(2): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202002004.htmDU Yan, LIU Chao, GAO Chao, et al. Progress, challenges and prospects of the continental shale gas exploration and development in the Yanchang exploration area of the Ordos Basin[J]. China Petroleum Exploration, 2020, 25(2): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202002004.htm [23] 马中良, 郑伦举, 赵中熙. 不同边界条件对油页岩原位转化开采的影响及启示[J]. 吉林大学学报(地球科学版), 2017, 47(2): 431-441. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201702010.htmMA Zhongliang, ZHENG Lunju, ZHAO Zhongxi. Influence and its revelation of oil shale in-situ mining simulation in different boundary conditions[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(2): 431-441. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201702010.htm [24] 赵文智, 胡素云, 侯连华. 页岩油地下原位转化的内涵与战略地位[J]. 石油勘探与开发, 2018, 45(4): 537-545. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804001.htmZHAO Wenzhi, HU Suyun, HOU Lianhua. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China[J]. Petroleum Exploration and Development, 2018, 45(4): 537-545. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804001.htm [25] 付金华, 刘显阳, 李士祥, 等. 鄂尔多斯盆地三叠系延长组长7段页岩油勘探发现与资源潜力[J]. 中国石油勘探, 2021, 26(5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202105001.htmFU Jinhua, LIU Xianyang, LI Shixiang, et al. Discovery and resource potential of shale oil of Chang 7 member, Triassic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2021, 26(5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202105001.htm