Exploration advances and accumulation model for Neocene lithological reservoirs in Laibei Low Uplift, Bohai Sea area
-
摘要: 莱北低凸起位于渤海海域的南部,受两大富烃凹陷夹持,构造演化复杂,断块圈闭破碎,油气成藏规律复杂,长期没有商业发现。通过对莱北低凸起各个构造20余口钻井实钻数据及各项参数的统计分析,探讨莱北低凸起油气成藏主控因素,结合近期的勘探发现,进一步总结莱北低凸起新近系岩性油藏成藏模式。汇聚类型决定油气在凸起上的富集区带,莱北低凸起的东西段分别发育“断层汇聚型”富集带和“构造脊汇聚型”富集带;油源断裂活动性控制油气的垂向运移效率,当已钻井所在圈闭运移断层的断距大于80 m时,浅层普遍获得较好的油气发现;断砂配置关系制约油气向储层充注的效率,当断砂接触面积大于10×103 m2时,新近系圈闭普遍能有较好的油气丰度及烃柱高度。运用建立的成藏模式对莱北低凸起新近系未钻岩性圈闭进行了综合分析,筛选出23个有利目标砂体,在后续的钻探中获得成功,证实了该成藏模式的有效性,并在莱北低凸起获得重大突破,找到了第一个亿吨级商业性油田——垦利6-1油田。Abstract: The Laibei Low Uplift locates in the southern part of Bohai Sea area, and is sandwiched by two major hydrocarbon-rich sags with a complex structural evolution history. The broken fault block traps and the model of hydrocarbon accumulation are still unclear. It is the single uplift (low uplift) without commercial development in the Bohai Sea area. Combined with recent drilling data, a "convergence-transportation-filling (CTF)" model of the Neocene lithological reservoir formation in the Laibei Low Uplift was proposed. The type of convergence determines the enrichment zone of oil and gas on the uplift, and the zones of "fault convergence type" and "structural ridge convergence type" enrichment are developed in the eastern and western sections of the Laibei Low Uplift. The vertical migration efficiency of oil and gas appeared to be determined by the activity of oil source fault. When the fracture slip of the migration fault in the drilled trap is greater than 80 m, the shallow layer is generally found to be a better reservoir of oil and gas. The relationship between fault and sand restricts the filling efficiency of oil and gas. When the contact area of fault and sand is greater than 10×103 m2, the Neocene traps generally have a better oil and gas abundance and hydrocarbon column height. By the using of established reservoir forming model, a comprehensive analysis of the undrilled lithological traps of Neogene strata was carried out by this study, 23 favorable target sand bodies were suggested and have been proved to be successful. The effectiveness of the reservoir forming model has been validated, and the first large-scale commercial oil field, i.e., Kenli 6-1 oil field, on the Laibei Low Uplift has been accordingly developed.
-
图 4 “断层汇聚型”富集带(a)和“构造脊汇聚型”富集带(b)示意
剖面位置见图 3。
Figure 4. Models of "fault convergence type" (a) and "structural ridge convergence type" (b) enrichment zones
图 6 渤海海域莱北低凸起垦利A—垦利D构造油藏剖面
剖面位置见图 3。
Figure 6. Profile of structural reservoirs from KL A to D in Laibei Low Uplift, Bohai Sea area
表 1 渤海海域莱北低凸起部分砂体断砂接触面积统计
Table 1. Contact area of fault-sand in some sand bodies, Laibei Low Uplift, Bohai Sea area
砂体所在构造 砂体名称 断砂接触面积/103 m2 砂体所在构造 砂体名称 断砂接触面积/103 m2 垦利A IV-1190 9.8 垦利C V-1270 8.9 IV-1205 20.7 V-1285 24.0 IV-1210 6.4 V-1200 12.9 V-1235 31.2 V-1300 3.4 垦利B V-1255 10.5 V-1305 10.8 V-1275 9.5 V-1315 20.9 IV-1215 3.2 V-1330 10.9 IV-1240 11.0 V-1345 9.4 V-1205 16.8 V-1350 7.5 V-1210 26.2 V-1355 11.5 V-1245 27.2 V-1360 20.6 V-1305 4.8 V-1370 5.6 垦利C V-1335 7.8 V-1385 26.5 Ⅲ-1130 7.4 V-1390 2.4 Ⅲ-1160 4.0 垦利D Ⅲ-995 9.2 Ⅲ-1180 0.5 Ⅲ-1035 2.5 Ⅲ-1200 9.2 V-1170 4.8 IV-1180 10.3 V-1195 28.0 IV-1190 3.7 Ⅴ-1200 5.0 IV-1225 11.0 Ⅴ-1250 14.5 IV-1285 3.3 Ⅴ-1299 13.0 V-1211 36.7 Ⅴ-1359 43.0 V-1265 8.0 Ⅴ-1420 56.0 -
[1] 薛永安, 杨海风, 黄江波, 等. 渤海海域浅层油气运移成藏理论技术创新与勘探突破[J]. 中国海上油气, 2020, 32(2): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202002002.htmXUE Yong'an, YANG Haifeng, HUANG Jiangbo, et al. Technological and theoretical innovations in the shallow hydrocarbon migration and accumulation of the Bohai Sea and the exploration breakthroughs[J]. China Offshore Oil and Gas, 2020, 32(2): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202002002.htm [2] 郝婧, 张厚和, 李春荣, 等. 渤海海域油气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3): 328-336. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202103010.htmHAO Jing, ZHANG Houhe, LI Chunrong, et al. Petroleum exploration history and enlightenment in Bohai sea[J]. Xinjiang Petroleum Geology, 2021, 42(3): 328-336. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202103010.htm [3] 薛永安, 王飞龙, 汤国民, 等. 渤海海域页岩油气地质条件与勘探前景[J]. 石油与天然气地质, 2020, 41(4): 696-709. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004005.htmXUE Yong'an, WANG Feilong, TANG Guomin, et al. Geolo-gical condition and exploration prospect of shale oil and gas in the Bohai Sea[J]. Oil & Gas Geology, 2020, 41(4): 696-709. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004005.htm [4] 王改卫, 张海义, 郭轩, 等. 黄河口凹陷古近系地层结构新认识与勘探潜力评价[J]. 油气地质与采收率, 2020, 27(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202005002.htmWANG Gaiwei, ZHANG Haiyi, GUO Xuan, et al. Insights of Paleogene stratigraphic structure and evaluation of exploration potential of Huanghekou Sag[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202005002.htm [5] 薛永安, 王奇, 牛成民, 等. 渤海海域渤中凹陷渤中19-6深层潜山凝析气藏的充注成藏过程[J]. 石油与天然气地质, 2020, 41(5): 891-902. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005002.htmXUE Yong'an, WANG Qi, NIU Chengmin, et al. Hydrocarbon charging and accumulation of BZ 19-6 gas condensate field in deep buried hills of Bozhong Depression, Bohai Sea[J]. Oil & Gas Geology, 2020, 41(5): 891-902. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005002.htm [6] 张驰, 杨波, 胡忠贵, 等. 莱州湾凹陷断层封闭性评价[J]. 断块油气田, 2020, 27(6): 734-738. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202006013.htmZHANG Chi, YANG Bo, HU Zhonggui, et al. Evaluation of fault sealing ability of Laizhou Bay Sag[J]. Fault-Block Oil and Gas Field, 2020, 27(6): 734-738. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202006013.htm [7] 田立新, 王清斌, 刘晓健, 等. 渤海海域莱州湾凹陷沙河街组硅化碎屑岩地质特征及其储层意义[J]. 石油与天然气地质, 2020, 41(5): 1073-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005018.htmTIAN Lixin, WANG Qingbin, LIU Xiaojian, et al. Geological features and their participation in the formation of silicified clastic reservoirs in the Shahejie Formation of Laizhouwan Sag, Bohai Sea[J]. Oil & Gas Geology, 2020, 41(5): 1073-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005018.htm [8] 赵野, 杨海风, 黄振, 等. 渤海海域庙西南洼陷走滑构造特征及其对油气成藏的控制作用[J]. 油气地质与采收率, 2020, 27(4): 35-44. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202004005.htmZHAO Ye, YANG Haifeng, HUANG Zhen, et al. Strike-slip structural characteristics and its controlling effect on hydrocarbon accumulation in Miaoxinan Sag, Bohai Sea[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(4): 35-44. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202004005.htm [9] 刘庆顺, 杨海风, 郭涛, 等. 莱州湾凹陷垦利16油田混源油定量判析及勘探前景分析[J]. 特种油气藏, 2020, 27(5): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202005011.htmLIU Qingshun, YANG Haifeng, GUO Tao, et al. Quantitative judgment and exploration prospect analysis of the mixed-source oil of Kenli 16 Oilfield in Laizhouwan Sag[J]. Special oil & Gas Reservoirs, 2020, 27(5): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202005011.htm [10] 乔锦杨, 张英波, 杨香华, 等. 黄河口凹陷莱北斜坡带玄武岩发育区砂岩成岩特征、孔隙流体及储层控制因素[J]. 现代地质, 2016, 30(1): 209-219. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201601023.htmQIAO Jinyang, ZHANG Yingbo, YANG Xianghua, et al. Diagenesis, pore fluid and controlling factors of reservoir quality in the basalt area of Laibei Slope Zone, Huanghekou Sag[J]. Geoscience, 2016, 30(1): 209-219. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201601023.htm [11] 张建民, 钱赓, 朱建敏, 等. 渤海南部A油田古近系物源约束地震储层预测[J]. 西南石油大学学报(自然科学版), 2018, 40(2): 15-24. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201802002.htmZHANG Jianmin, QIAN Geng, ZHU Jianmin, et al. Paleogene source-constrained seismic reservoir predictions in A oilfield of the southern Bohai Sea[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2018, 40(2): 15-24. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201802002.htm [12] 廖新武, 尹楠鑫. 莱州湾凹陷垦利10-1油田火山岩识别与分布预测[J]. 合肥工业大学学报(自然科学版), 2018, 41(5): 683-688. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201805019.htmLIAO Xinwu, YIN Nanxin. Recognition and distribution prediction of volcanic rocks in Kenli 10-1 oilfield of Laizhouwan Sag[J]. Journal of Hefei University of Technology, 2018, 41(5): 683-688. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201805019.htm [13] 杨海风, 牛成民, 柳永军, 等. 渤海垦利6-1新近系大型岩性油藏勘探发现与关键技术[J]. 中国石油勘探, 2020, 25(3): 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202003003.htmYANG Haifeng, NIU Chengmin, LIU Yongjun, et al. Discovery and key exploration technology of KL6-1 large lithologic oil reservoir of Neogene in the Bohai Bay Basin[J]. China Petroleum Exploration, 2020, 25(3): 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202003003.htm [14] 王孝辕, 黄江波, 杨海风, 等. 莱北低凸起构造成因演化及其对沉积体系的控制作用[J]. 东北石油大学学报, 2018, 42(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201802001.htmWANG Xiaoyuan, HUANG Jiangbo, YANG Haifeng, et al. Tectonic origin and evolution of Laibei low uplift and its control over sedimentary system[J]. Journal of Northeast Petroleum University, 2018, 42(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201802001.htm [15] 郭涛, 傅强, 夏庆龙, 等. 黄河口凹陷沙三中烃源岩特征及地质意义[J]. 断块油气田, 2010, 17(6): 698-701. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201006015.htmGUO Tao, FU Qiang, XIA Qinglong, et al. Characteristics and geologic significance of hydrocarbon source rock of middle E2s3 reservoir in Huanghekou Sag[J]. Fault-Block Oil & Gas Field, 2010, 17(6): 698-701. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201006015.htm [16] 王鑫, 余思, 张远, 等. 渤海湾盆地莱北低凸起新近系物源分析[J]. 中国石油和化工标准与质量, 2014, 34(1): 150. https://www.cnki.com.cn/Article/CJFDTOTAL-HGBJ201401126.htmWANG Xin, YU Si, ZHANG Yuan, et al. A Synthetic thought of provenance analysis in the Neogene strata in Laibei Low Uplift[J]. China Petroleum and Chemical Standard and Quality, 2014, 34(1): 150. https://www.cnki.com.cn/Article/CJFDTOTAL-HGBJ201401126.htm [17] 金之钧, 张发强. 油气运移研究现状及主要进展[J]. 石油与天然气地质, 2005, 26(3): 263-270. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200503001.htmJIN Zhijun, ZHANG Faqiang. Status and major advancements in study of hydrocarbon migration[J]. Oil & Gas Geology, 2005, 26(3): 263-270. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200503001.htm [18] 黄建军, 纪友亮, 戴林. 油气汇聚体系[J]. 海洋地质动态, 2005, 21(3): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT200503009.htmHUANG Jianjun, JI Youliang, DAI Lin. Oil accumulation systems[J]. Marine Geology Letters, 2005, 21(3): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT200503009.htm [19] 孙同文, 吕延防, 刘哲, 等. 断裂控藏作用定量评价及有利区预测: 以辽河坳陷齐家—鸳鸯沟地区古近系沙河街组三段上亚段为例[J]. 石油与天然气地质, 2013, 34(6): 790-796. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201306012.htmSUN Tongwen, LV Yanfan, LIU Zhe, et al. Quantitative evaluation of control of faults on hydrocarbon accumulation and play fairway prediction: a case from Es3(1) in Qijia-Yuanyanggou area, the Liaohe Depression[J]. Oil & Gas Geology, 2013, 34(6): 790-796. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201306012.htm [20] 薛永安. 渤海海域油气运移"汇聚脊"模式及其对新近系油气成藏的控制[J]. 石油学报, 2018, 39(9): 963-970. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201809001.htmXUE Yong'an. The "catchment ridge" model of hydrocarbon migration in Bohai Sea and its control on Neogene hydrocarbon accumulation[J]. Acta Petrolei Sinica, 2018, 39(9): 963-970. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201809001.htm [21] 温宏雷, 邓辉, 李正宇, 等. 渤海海域新近系明化镇组断裂控藏作用定量评价: 以黄河口凹陷中央构造脊为例[J]. 油气地质与采收率, 2017, 24(4): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201704006.htmWEN Honglei, DENG Hui, LI Zhengyu, et al. Quantitative evaluation of control effect of faults on hydrocarbon accumulation in the Minghuazhen Formation, Bohai Sea: a case study of central structural ridge in Huanghekou Sag[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(4): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201704006.htm [22] 赵勇, 戴俊生. 应用落差分析研究生长断层[J]. 石油勘探与开发, 2003, 30(3): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200303003.htmZHAO Yong, DAI Junsheng. Identification of growth fault by fault fall analysis[J]. Petroleum Exploration and Development, 2003, 30(3): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200303003.htm [23] 周心怀, 牛成民, 滕长宇. 环渤中地区新构造运动期断裂活动与油气成藏关系[J]. 石油与天然气地质, 2009, 30(4): 469-475. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200904017.htmZHOU Xinhuai, NIU Chengmin, TENG Changyu. Relationship between faulting and hydrocarbon pooling during the Neotectonic movement around the central Bohai Bay[J]. Oil & Gas Geology, 2009, 30(4): 469-475. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200904017.htm [24] 王德英, 张宏国, 官大勇, 等. 环渤中地区新近系控藏模式与高丰度油藏勘探实践[J]. 石油学报, 2021, 42(3): 273-282. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202103001.htmWANG Deying, ZHANG Hongguo, GUAN Dayong, et al. Neogene reservoir-controlling mode and exploration practice of high-abundance oil reservoirs in Bozhong Sag and its surrounding area[J]. Acta Petrolei Sinica, 2021, 42(3): 273-282. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202103001.htm [25] 牛成民, 王飞龙, 何将启, 等. 渤海海域渤中19-6潜山气藏成藏要素匹配及成藏模式[J]. 石油实验地质, 2021, 43(2): 259-267. doi: 10.11781/sysydz202102259NIU Chengmin, WANG Feilong, HE Jiangqi, et al. Accumulation factor matching and model of Bozhong 19-6 buried hill gas reservoir, Bohai Sea area[J]. Petroleum Geology and Experiment, 2021, 43(2): 259-267. doi: 10.11781/sysydz202102259 [26] 王伟, 孙同文, 曹兰柱, 等. 油气由断裂向砂体侧向分流能力定量评价方法: 以渤海湾盆地饶阳凹陷留楚构造为例[J]. 石油与天然气地质, 2016, 37(6): 979-989. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201606024.htmWANG Wei, SUN Tongwen, CAO Lanzhu, et al. An quantitative evaluation method of probability for diversion flow oil and gas laterally from faults to sand bodies: a case study from Leave Chu Structure in the Raoyang Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2016, 37(6): 979-989. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201606024.htm [27] 杨海风, 徐长贵, 牛成民, 等. 渤海湾盆地黄河口凹陷新近系油气富集模式与成藏主控因素定量评价[J]. 石油与天然气地质, 2020, 41(2): 259-269. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202002004.htmYANG Haifeng, XU Changgui, NIU Chengmin, et al. Quantitative evaluation of hydrocarbon accumulation pattern and the controlling factors in the Neogene of Huanghekou Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2020, 41(2): 259-269. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202002004.htm [28] 薛盼. 断—砂配置对油气运移与聚集的控制作用[D]. 大庆: 东北石油大学, 2015.XUE Pan. The control function of the fault-sand configuration on hydrocarbon migration and accumulation[D]. Daqing: Northeast Petroleum University, 2015. [29] 冯英, 邓美洲, 李亚晶, 等. 断层在油气成藏中的控制作用: 以川西东坡地区须二段气藏为例[J]. 断块油气田, 2021, 28(5): 586-591. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202105003.htmFENG Ying, DENG Meizhou, LI Yajing, et al. Control effect of faults on hydrocarbon accumulation: a case study of gas reservoir of the second member of Xujiahe Formation, Dongpo area, western Sichuan Basin[J]. Fault-Block Oil and Gas Field, 2021, 28(5): 586-591. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202105003.htm [30] 杜晓东, 彭光荣, 吴静, 等. 珠江口盆地阳江东凹断层特征及其对油气成藏的影响[J]. 新疆石油地质, 2020, 41(4): 414-421. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202004005.htmDU Xiaodong, PENG Guangrong, WU Jing, et al. Faults and its impacts on petroleum accumulation in eastern Yangjiang sag, Pearl River Mouth basin[J]. Xinjiang Petroleum Geology, 2020, 41(4): 414-421. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202004005.htm [31] 张新涛, 牛成民, 黄江波, 等. 黄河口凹陷渤中34区明化镇组下段油气输导体系[J]. 油气地质与采收率, 2012, 19(5): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201205010.htmZHANG Xintao, NIU Chengmin, HUANG Jiangbo, et al. Hydrocarbon migration of Bozhong34 in Lower Minghuazhen Formation, Huanghekou Sag, offshore Bohai Sea[J]. Petroleum Geo-logy and Recovery Efficiency, 2012, 19(5): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201205010.htm