Carbon isotopic evolution of hydrocarbon gases generated from carbonate source rocks via different thermal simulation methods
-
摘要: 我国海相烃源岩普遍处于高—过成熟阶段,现有的烃气碳同位素指标不能直接应用于判识海相碳酸盐岩天然气成因类型以及进行油气源对比。利用云南禄劝Ⅱ1型低成熟海相碳酸盐岩烃源岩,开展了不同热模拟方式下的系列热解生烃实验,对收集的气体产物进行碳同位素分析。结果表明:①在整个热演化阶段,干酪根碳同位素值随成熟度变化不大,而甲、乙烷碳同位素值均随成熟度增加先变轻再变重,具有相似的演变特征,在油气生成的主要阶段,明显小于其母质干酪根碳同位素值,在过成熟阶段,乙烷碳同位素变重的趋势明显加快,甚至大于其母质干酪根的碳同位素值,呈现出“煤型气”特征,故单纯地采用甲、乙烷碳同位素值来判识天然气类型时需要慎重;②在成熟度相同时,半封闭—半开放体系模拟实验所得气体碳同位素值相比封闭体系模拟实验的要轻,这指示同一烃源岩排出烃气所形成的常规天然气藏,其烃气碳同位素值与滞留在源内的页岩气碳同位素值存在一定的差异,显示出似乎“不同源”的特征,在利用碳同位素模版或回归公式开展气源对比时也需要注意;③两种热模拟方式下、同一种烃源岩在全演化阶段,甲烷碳同位素值总是比乙烷的要小,这表明由单一烃源岩直接供气形成的常规天然气藏,不会发生甲、乙烷碳同位素的“倒转现象”。Abstract: Chinese marine source rocks are generally at the stage of high- to over-mature, there are still some uncertainties about whether the existing hydrocarbon isotopic indexes can be directly employed to distinguish the genetic types of marine carbonate natural gas and consequently, gas-oil source correlation can be carried out. In this paper, a series of pyrolysis experiments for hydrocarbon generation with different conditions were carried out using the low-maturity marine carbonate source rocks of Luquan Ⅱ1 type in Yunnan province to analyze the carbon isotope of the collected gas products. The results showed that: ①During the entire thermal evolution stage, the carbon isotope values of kerogen did not vary significantly with the increasing of maturity, while the carbon isotope values of methane and ethane both decreased and then increased with the increase of maturity, showing similar evolution characteristics. In the main oil and gas generation stage, it is significantly smaller than the isotope value of its parent material kerogen. In the over-mature stage (VRo ≥2.2%), the tendency of carbon isotope of ethane to become heavier is obviously accelerated, even greater than the carbon isotope value of its parent material kerogen, showing the characteristics of "coal-type gas". This suggested that we need to be cautious when simply using the carbon isotope values of methane and ethane to identify the type of natural gas. ②At the same maturity, the carbon isotope values obtained from the pyrolysis experiment of semi-closed and semi-open system are lighter than those obtained from the pyrolysis experiment of closed system. This indicates that conventional natural gas reservoirs formed by the discharge of hydrocarbon gas from the same source rock have a certain difference between the carbon isotope values of hydrocarbon gas and the carbon isotope values of shale gas retained in the source, showing the characteristics of "different sources". Attention should also be exercised to the use of carbon isotope templates or regression formulas to carry out gas-source comparisons. ③With the two pyrolysis methods, the carbon isotope value of methane is always lighter than that of ethane in the full evolution stage of the same source rock. This indicated that conventional natural gas reservoirs formed by direct gas supply from single set of source rock do not have "inversion" phenomenon of methane and ethane carbon isotopes.
-
图 3 云南禄劝泥盆系华宁组海相碳酸盐岩烃源岩不同演化阶段热模拟天然气δ13C1—δ13C2的关系
底图来源于文献[30]。
Figure 3. Relationship between δ13C1 and δ13C2 values of thermally simulated natural gas in different evolution stages of marine carbonate source rocks in Devonian Huaning Formation, Luquan area, Yunnan province
图 4 云南禄劝海相碳酸盐岩烃源岩不同热模拟演化阶段天然气δ13C2与δ13C2-δ13C1的关系
底图据戴金星等[6]修改。
Figure 4. Relationship between δ13C2 and δ13C2-δ13C1 of natural gas in different thermal simulation stages of marine carbonate source rocks in Devonian Huaning Formation, Luquan area, Yunnan province
表 1 云南禄劝泥盆系华宁组泥灰岩基本油气地球化学特征
Table 1. Basic geochemical characteristics of marl in Devonian Huaning Formation, Luquan area, Yunnan province
样品编号 ω(TOC)/% VRo/% 沥青“A”/% IH/(mg·g-1) 碳酸盐矿物/% 显微组分/% 类型指数 干酪根类型 腐泥组 壳质组 镜质组 惰质组 LQ-2 3.45 0.58 0.145 2 425 40.04 78 12 4 6 75 Ⅱ1 LQ-4 4.55 0.58 0.204 7 429 35.95 74 15 6 5 75 Ⅱ1 LQ-5-2 5.33 0.58 0.278 6 356 33.15 72 16 5 7 75 Ⅱ1 表 2 云南禄劝泥盆系华宁组海相泥灰岩生烃模拟实验条件
Table 2. Simulation experiment conditions for hydrocarbon generation in marine marl in Devonian Huaning Formation, Luquan area, Yunnan province
序号 模拟温度/℃ 恒温时间/h 上覆静岩压力/MPa 流体压力/MPa 等效镜质体反射率/% DK-LQ-2 LQ-2 LQ-4 DK-LQ-2 LQ-2 LQ-4 LQ-5-2 DK-LQ-2 LQ-2 LQ-4 LQ-5-2 1 250 48 3.5 2.8 3.2 0.62 0.61 0.65 2 300 48 94 48.8 5.8 6.2 6.9 0.71 0.78 0.75 0.78 3 350 48 108 56.3 10.2 11.4 12.3 1.05 1.12 1.18 1.15 4 400 48 121 63.1 23.5 24.6 26.8 1.57 1.68 1.66 1.70 5 450 48 139 72.5 26.4 28.6 29.2 1.96 2.25 2.11 2.17 6 500 48 163 85.0 32.2 35.1 35.9 2.79 2.75 2.67 2.71 7 550 48 173 90.0 3.22 注:DK-LQ-2为半封闭—半开放体系实验;其他样品为封闭体系实验。 表 3 云南禄劝泥盆系华宁组泥灰岩在不同热模拟方式下干酪根和气体碳同位素值
Table 3. Carbon isotopic values of kerogen and gas generated from marl in Devonian Huaning Formation, Luquan area, Yunnan province with different thermal modeling methods
热模拟方式 样品号 模拟温度/℃ δ13CPDB/‰ 碳同位素差值/‰ 干酪根 甲烷 乙烷 丙烷 Δδ13CPDB(干酪根-甲烷) Δδ13CPDB(乙烷-甲烷) 封闭体系 LQ-2 -32.55 LQ-2 250 -32.72 -42.14 -36.32 -34.40 9.42 5.82 LQ-2 300 -32.61 -43.66 -38.4 -36.33 11.05 5.26 LQ-2 350 -32.53 -45.11 -37.60 -35.96 12.59 7.51 LQ-2 400 -32.35 -44.40 -36.59 -34.19 11.65 7.81 LQ-2 450 -32.17 -40.96 -34.03 -26.65 8.79 6.93 LQ-2 500 -32.38 -38.15 -26.32 5.77 11.83 半封闭—半开放体系 DK-LQ-2 300 -32.25 -40.41 -36.84 -36.17 8.16 3.57 DK-LQ-2 350 -32.43 -47.92 -39.30 -36.56 15.49 8.62 DK-LQ-2 400 -32.78 -47.10 -37.57 -34.91 14.32 9.53 DK-LQ-2 450 -32.36 -45.10 -36.42 -34.2 12.74 8.68 DK-LQ-2 500 -31.74 -41.44 -31.65 -22.36 9.70 9.79 DK-LQ-2 550 -31.93 -38.63 -23.97 -20.53 6.70 14.66 封闭体系 LQ-4 -32.96 LQ-4 250 -32.64 -41.44 -37.52 -35.18 0.89 3.92 LQ-4 300 -32.89 -42.18 -38.09 -36.53 9.29 4.09 LQ-4 350 -32.8 -45.95 -37.56 -36.10 13.15 8.39 LQ-4 400 -32.75 -45.36 -36.49 -34.73 12.61 8.87 LQ-4 450 -32.21 -41.72 -33.62 -26.30 9.51 8.10 LQ-4 500 -32.66 -38.54 -26.41 5.88 12.13 LQ-5-2 -33.28 LQ-5-2 250 -33.40 -40.78 -38.46 -36.53 2.30 2.32 LQ-5-2 300 -33.40 -41.21 -38.70 -37.21 7.81 2.51 LQ-5-2 350 -33.19 -46.49 -37.56 -36.06 13.30 8.93 LQ-5-2 400 -33.2 -45.58 -36.20 -34.27 12.38 9.38 LQ-5-2 450 -33.07 -41.67 -33.12 -26.20 8.60 8.55 LQ-5-2 500 -33.11 -38.59 -26.08 5.48 12.51 注:Δδ13CPDB(干酪根-甲烷)与Δδ13CPDB(乙烷-甲烷)表示括号内两者之间的差值。 -
[1] 梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(二): 南方四套区域性海相烃源岩的地球化学特征[J]. 海相油气地质, 2009, 14(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200902003.htmLIANG Digang, GUO Tonglou, CHEN Jianping, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China(part 2): geochemical characte-ristics of four suits of regional marine source rocks, South China[J]. Marine Origin Petroleum Geology, 2009, 14(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200902003.htm [2] 李蔚洋. 中扬子地区古生界高成熟—过成熟海相烃源岩评价指标浅析[J]. 河北地质大学学报, 2017, 40(2): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX201702002.htmLI Weiyang. Research on the evaluation criterion of high-over mature marine-source rock in the Middle Yangtze region[J]. Journal of Shijiazhuang University of Economics, 2017, 40(2): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX201702002.htm [3] 程克明, 王兆云. 高成熟和过成熟海相碳酸盐岩生烃条件评价方法研究[J]. 中国科学(D辑), 1996, 26(6): 537-543. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199606009.htmCHENG Keming, WANG Zhaoyun. Study on evaluation method of hydrocarbon generation conditions for high mature and over mature marine carbonate rocks[J]. Science in China (Series D), 1996, 26(6): 537-543. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199606009.htm [4] 熊永强, 张海祖, 耿安松. 热演化过程中干酪根碳同位素组成的变化[J]. 石油实验地质, 2004, 26(5): 484-487. doi: 10.11781/sysydz200405484XIONG Yongqiang, ZHANG Haizu, GENG Ansong. Variation of carbon isotopic composition of kerogen during thermal evolution[J]. Petroleum Geology & Experiment, 2004, 26(5): 484-487. doi: 10.11781/sysydz200405484 [5] 王万春, 徐永昌, SCHIDLOWSKI M, 等. 不同沉积环境及成熟度干酪根的碳氢同位素地球化学特征[J]. 沉积学报, 1997, 15(S1): 133-137. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB1997S1025.htmWANG Wanchun, XU Yongchang, SCHIDLOWSKI M, et al. The geochemical characteristics of carbon and hydrogen isotopes of kerogens of various maturity and depositional environments[J]. Acta Sedimentologica Sinica, 1997, 15(S1): 133-137. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB1997S1025.htm [6] 戴金星. 天然气碳氢同位素特征和各类天然气鉴别[J]. 天然气地球科学, 1993, 4(2/3): 1-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX1993Z1000.htmDai Jinxing. Isotopic characteristics of natural gas hydrocarbon and identification of various types of natural gas[J]. Natural Gas Geoscience, 1993, 4(2/3): 1-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX1993Z1000.htm [7] 韩中喜, 李剑, 垢艳侠, 等. 甲、乙烷碳同位素用于判识天然气成因类型的讨论[J]. 天然气地球化学, 2016, 27(4): 665-671. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201604011.htmHAN Zhongxi, LI jian, GOU Yanxia, et al. The application of methane and ethane carbon isotopes as an identification index for gas origin study[J]. Natural Gas Geoscience, 2016, 27(4): 665-671. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201604011.htm [8] 宋岩, 徐永昌. 天然气成因类型及其鉴别[J]. 石油勘探与开发, 2005, 32(4): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200504006.htmSONG Yan, XU Yongchang. Origin and identification of natural gases[J]. Petroleum Exploration and Development, 2005, 32(4): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200504006.htm [9] 刚文哲, 高岗, 郝石生, 等. 论乙烷碳同位素在天然气成因类型研究中的应用[J]. 石油实验地质, 1997, 19(2): 164-167. doi: 10.11781/sysydz199702164GANG Wenzhe, GAO Gang, HAO Shisheng, et al. Carbon isotope of ethane applied in the analyses of genetic types of natural gas[J]. Experimental Petroleum Geology, 1997, 19(2): 164-167. doi: 10.11781/sysydz199702164 [10] 黄第藩, 熊传武, 杨俊杰, 等. 鄂尔多斯盆地中部气田气源判识和天然气成因类型[J]. 天然气工业, 1996, 16(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG606.000.htmHUANG Difan, XIONG Chuangwu, YANG Junjie, et al. Gas source discrimination and natural gas genetic types of central gas field in E'erduosi Basin[J]. Natural Gas Industry, 1996, 16(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG606.000.htm [11] 马永生. 普光气田天然气地球化学特征及气源探讨[J]. 天然气地球科学, 2008, 19(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200801004.htmMA Yongsheng. Geochemical characteristics and origin of natural gases from Puguang Gas Field on eastern Sichuan Basin[J]. Natural Gas Geoscience, 2008, 19(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200801004.htm [12] 张君峰, 王东良, 王招明, 等. 喀什凹陷阿克莫木气田天然气成藏地球化学[J]. 天然气地球科学, 2005, 16(4): 507-513. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200504021.htmZHANG Junfeng, WANG Dongliang, WANG Zhaoming, et al. Natural gas deposit formation geochemistry of Akmomu gas field Kashi Sag in Tarim Basin[J]. Natural Gas Geoscience, 2005, 16(4): 507-513. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200504021.htm [13] 李友川, 孙玉梅, 兰蕾. 用乙烷碳同位素判别天然气成因类型存在问题探讨[J]. 天然气地球科学, 2016, 27(4): 654-664. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201604010.htmLI Youchuan, SUN Yumei, LAN Lei. Discussion on the recognition of gas origin by using ethane carbon isotope[J]. Natural Gas Geoscience, 2016, 27(4): 654-664. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201604010.htm [14] 牟传龙, 王立全, 沈苏. 云南拖顶泥盆纪岩相古地理及层序地层分析[J]. 岩相古地理, 1999, 19(4): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YXGD904.000.htmMOU Chuanlong, WANG Liquan, SHEN Su. Devonian sedimenatry facies and palaeogeography and sequence stratigraphy of the Tuoding copper mining district, Yunnan[J]. Sedimentary Facies and Palaeogeography, 1999, 19(4): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YXGD904.000.htm [15] 张世涛, 冯明刚. 滇东南地区泥盆纪沉积地质学研究[J]. 云南地质, 1999, 18(4): 382-391. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD199904001.htmZHANG Shitao, FENG Minggang. A study on the Devonian sedimentology of southeast Yunnan[J]. Yunnan Geology, 1999, 18(4): 382-391. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD199904001.htm [16] 梁秋源, 陈坚. 楚雄盆地云龙凹陷石油地质特征及勘探目标[J]. 天然气工业, 2001, 21(2): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200102005.htmLIANG Qiuyuan, CHEN Jian. Petroleum geological characteristics and exploration targets in Yunlong Sag of Chuxiong Basin[J]. Natural Gas Industry, 2001, 21(2): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200102005.htm [17] 边春鹏. 滇西保山西邑地区泥盆系沉积特征及沉积古地理研究[D]. 北京: 中国地质大学(北京), 2016.BIAN Chunpeng. A study on the Devonian sedimentary characteristics and paleogeography in the Xiyi area, Baoshan City, western Yunnan Province[D]. Beijing: China University of Geosciences (Beijing), 2016. [18] 郑伦举, 秦建中, 何生, 等. 地层孔隙热压生排烃模拟实验初步研究[J]. 石油实验地质, 2009, 31(3): 296-302. doi: 10.11781/sysydz200903296ZHENG Lunju, QIN Jianzhong, HE Sheng, et al. Preliminary study of formation porosity thermocompression simulation experiment of hydrocarbon generation and expulsion[J]. Petroleum Geology & Experiment, 2009, 31(3): 296-302. doi: 10.11781/sysydz200903296 [19] 吴群, 彭金宁. 川东北地区埋藏史及热史分析: 以普光2井为例[J]. 石油实验地质, 2013, 35(2): 133-138. doi: 10.11781/sysydz201302133WU Qun, PENG Jinning. Burial and thermal histories of northeastern Sichuan Basin: a case study of well Puguang 2[J]. Petroleum Geology & Experiment, 2013, 35(2): 133-138. doi: 10.11781/sysydz201302133 [20] 郑伦举. PVT共控作用下油气的形成过程与演化模式[D]. 武汉: 中国地质大学, 2013.ZHENG Lunju. Formation process and evolution mode of petroleum controlled by PVT[D]. Wuhan: China University of Geosciences, 2013. [21] 马中良, 郑伦举, 李志明. 烃源岩有限空间温压共控生排烃模拟实验研究[J]. 沉积学报, 2012, 30(5): 955-963. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201205021.htmMA Zhongliang, ZHENG Lunju, LI Zhiming. The thermocompression simulation experiment of source rock hydrocarbon generation and expulsion in formation porosity[J]. Acta Sedimentologica Sinica, 2012, 30(5): 955-963. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201205021.htm [22] 李志明, 郑伦举, 马中良, 等. 烃源岩有限空间油气生排模拟及其意义[J]. 石油实验地质, 2011, 33(5): 447-451. doi: 10.11781/sysydz201105447LI Zhiming, ZHENG Lunju, MA Zhongliang, et al. Simulation of source rock for hydrocarbon generation and expulsion in finite space and its significance[J]. Petroleum Geology & Experiment, 2011, 33(5): 447-451. doi: 10.11781/sysydz201105447 [23] 刘德汉, 史继扬. 高演化碳酸盐烃源岩非常规评价方法探讨[J]. 石油勘探与开发, 1994, 21(3): 113-115. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK403.019.htmLIU Dehan, SHI Jiyang. Discussion on unconventional evaluation method of high evolution carbonate source rock[J]. Petroleum Exploration and Development, 1994, 21(3): 113-115. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK403.019.htm [24] 廖玉宏, 耿安松, 卢家烂. 初次运移中的同位素分馏效应[J]. 沉积学报, 2006, 24(5): 756-762. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200605017.htmLIAO Yuhong, GENG Ansong, LU Jialan. Isotopic fractionation effect in primary migration[J]. Acta Sedimentologica Sinica, 2006, 24(5): 756-762. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200605017.htm [25] LU Shuangfang, LI Jijun, XUE Haitao, et al. Pyrolytic gaseous hydrocarbon generation and the kinetics of carbon isotope fractionation in representative model compounds with different chemical structures[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(4): 1773-1793. [26] LIU Wenhui, WANG Jie, TENGER, et al. Stable carbon isotopes of gaseous alkanes as genetic indicators inferred from laboratory pyro-lysis experiments of various marine hydrocarbon source materials from southern China[J]. Science China Earth Sciences, 2012, 55(6): 966-974. [27] KILLOPS S D, KILLOPS V J. An introduction to organic geochemistry[M]. 2nd ed. Malden, MA: Blackwell Pub, 2005. [28] LIAO Yuhong, ZHENG Yijun, PAN Yinhua, et al. A method to quantify C1-C5 hydrocarbon gases by kerogen primary cracking using pyrolysis gas chromatography[J]. Organic Geochemistry, 2015, 79: 49-55. [29] 赵晗, 马中良, 郑伦举, 等. 有限空间温压共控热模拟油气产物地球化学特征[J]. 天然气地球科学, 2020, 31(1): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202001007.htmZHAO Han, MA Zhongliang, ZHENG Lunju, et al. Geochemical characteristics of hydrocarbon products under thermal simulation of temperature and pressure co-control in finite space[J]. Natural Gas Geoscience, 2020, 31(1): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202001007.htm [30] ROONEY M A, CLAYPOOL G E, CHUNG H M. Modeling thermogenic gas generation using carbon isotope ratiosof natural gas hydrocarbons[J]. Chemical Geology, 1995, 126(3): 219-232. [31] 张士亚, 周谨. 我国天然气的成因分类[C]//石油与天然气地质文集. 北京: 地质出版社, 1994.ZHANG Shiya, ZHOU Jin. Genetic classification of natural gas in China[C]//Petroleum and Natural Gas Geology Collection. Beijing: Geological Publishing House, 1994.