Characteristics of methane isothermal adsorption of deep shale from Lower Silurian Longmaxi Formation in southeastern Sichuan Basin and its geological significance
-
摘要: 目前在四川盆地已实现深层页岩气的勘探突破,然而对深层页岩吸附性能及页岩气赋存状态仍存在一定的争议。为此,开展了川东南涪陵、丁山地区下志留统龙马溪组深层典型页岩样品近地质条件下的高温高压等温吸附实验。实验结果表明,页岩绝对吸附量与过剩吸附量之间存在较大的差别,必须将过剩吸附量校正为绝对吸附量后来评价深层页岩的真实吸附能力。校正后的页岩绝对吸附量随压力的增大呈现“快速上升”、“缓慢上升”和“平稳上升”3个阶段,涪陵及丁山地区深层页岩在110℃、70 MPa条件下绝对吸附量仍可达2.0 m3/t以上,结合深层页岩吸附、游离气比例,深层页岩总含气量可达4.0 m3/t以上,表明深层页岩在高温高压下仍可能具有较好的含气性。深层页岩吸附能力评价可为页岩含气量研究、资源潜力评价和储量评估提供科学依据;针对深层与中浅层页岩游离、吸附气比例的差异,采取针对性的勘探、开采方式可以有效提高页岩气的产能及产气周期。Abstract: Breakthrough of the exploration of deep shale gas in the Sichuan Basin, Southwest China, has been achieved for decades, there are still some controversies about the adsorption performance and occurrence state of shale gas in deep strata. Isothermal adsorption experiments were carried out under high temperature and high pressure with typical shale samples from deep stratum of the Lower Silurian Longmaxi Formation in Fuling and Dingshan areas in the southeastern Sichuan Basin. Results show that there is a big difference between absolute adsorption and excess adsorption, thus, it is proposed that the excess adsorption capacity should be corrected to the absolute adsorption capacity when evaluating the adsorption performance of deep shale gas. After correction, the variation of absolute shale adsorption with pressure appeared to have three stages including "rapid rise", "slow rise" and "steady rise". The absolute adsorption capacity of deep shale samples from Fuling and Dingshan areas is higher than 2.0 m3/t at 110℃ and 70 MPa, and combined with the adsorption and free gas ratios of deep shale, the total gas content is more than 4.0 m3/t, indicating that deep shale may still have good adsorption performance under high temperature and high pressure. The evaluation of deep shale adsorption capacity can provide reliable parameters for the study of shale gas content and the evaluation of resource potential and reserve for shale gas. Considering the difference of ratio of free gas to adsorbed gas between deep shale and shallow-medium shale, different exploration and production methods can be adopted to effectively improve the production capacity and production cycle of shale gas.
-
图 1 四川盆地及周缘下志留统底界埋深及页岩气田分布
修改自文献[8]。
Figure 1. Distribution of shale gas fields and bottom depth of Lower Silurian in Sichuan Basin and its periphery
表 1 等温吸附实验样品基本特征参数
Table 1. Basic characteristic parameters of isothermal adsorption experiment samples
取样井 深度/m 层位 ω(TOC)/% 孔隙度/% 矿物组成/% 泥页岩类型 硅质 碳酸盐 黏土 JY7 3 551.2 龙马溪组LM4小层 2.74 5.02 35.93 17.44 37.1 混合型 DY5 3 804.1 龙马溪组LM4小层 2.45 2.79 52.70 5.10 42.2 硅质型 表 2 川东南地区JY7、DY5井龙马溪组深层页岩样品等温吸附参数
Table 2. Isothermal adsorption parameters of deep shale samples from Longmaxi Formation in wells JY7 and DY5 in southeastern Sichuan Basin
样品 解吸温度/ ℃ Langmuir体积(VL)/ (m3·t-1) Langmuir压力(PL)/ MPa 吸附相密度ρa/ (g·cm-3) JY7-3551.2 30 1.87 2.54 0.370 16 JY7-3551.2 70 1.56 3.85 0.303 53 JY7-3551.2 110 1.52 7.05 0.237 15 DY5-3804.1 30 2.01 3.88 0.229 67 DY5-3804.1 70 1.71 6.26 0.190 04 DY5-3804.1 110 1.39 8.02 0.174 70 -
[1] 庞河清, 熊亮, 魏力民, 等. 川南深层页岩气富集高产主要地质因素分析: 以威荣页岩气田为例[J]. 天然气工业, 2019, 39(S1): 78-84.PANG Heqing, XIONG Liang, WEI Limin, et al. Analysis of major geological factors for deep shale gas enrichment and high yield in south Sichuan Basin: a case study of Weirong shale gas field[J]. Natural Gas Industry, 2019, 39(S1): 78-84. [2] 中华人民共和国国土资源部. 页岩气资源/储量计算与评价技术规范: DZ/T0254—2014[S]. 北京: 中国标准出版社, 2014.Ministry of Land and Resources of the People's Republic of China. Regulation of shale gas resources/reserves estimation: DZ/T 0254-2014[S]. Bejing: Standards Press of China, 2014. [3] 戴方尧, 郝芳, 胡海燕, 等. 川东焦石坝五峰—龙马溪组页岩气赋存机理及其主控因素[J]. 地球科学, 2017, 42(7): 1185-1194. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707013.htmDAI Fangyao, HAO Fang, HU Haiyan, et al. Occurrence mechanism and key controlling factors of Wufeng-Longmaxi shale gas, eastern Sichuan Basin[J]. Earth Science, 2017, 42(7): 1185-1194. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707013.htm [4] 杨甫, 马东民, 段中会, 等. 温度—压力综合吸附模型的陆相页岩含气量变化特征[J]. 中国煤炭地质, 2019, 31(9): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201909007.htmYANG Fu, MA Dongmin, DUAN Zhonghui, et al. Temperature-pressure comprehensive adsorption model limnic facies shale gas content variation features[J]. Coal Geology of China, 2019, 31(9): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201909007.htm [5] 刘尚平, 李希建, 尹鑫, 等. 高温高压下页岩气等温吸附线拟合模型优选[J]. 中国矿业, 2018, 27(6): 160-166. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201806034.htmLIU Shangping, LI Xijian, YIN Xin, et al. Optimal model of isothermal adsorption for shale gas under high temperature and high pressure[J]. China Mining Magazine, 2018, 27(6): 160-166. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201806034.htm [6] 周尚文, 王红岩, 薛华庆, 等. 页岩过剩吸附量与绝对吸附量的差异及页岩气储量计算新方法[J]. 天然气工业, 2016, 36(11): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201611004.htmZHOU Shangwen, WANG Hongyan, XUE Huaqing, et al. Difference between excess and absolute adsorption capacity of shale and a new shale gas reserve calculation method[J]. Natural Gas Industry, 2016, 36(11): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201611004.htm [7] 沈瑞, 郭和坤, 胡志明, 等. 页岩气高压吸附特征及其对储采规律的影响[J]. 地学前缘, 2018, 25(2): 204-209. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201802027.htmSHEN Rui, GUO Hekun, HU Zhiming, et al. High pressure adsorption characteristics of shale gas and their impact on the law of reserve-production[J]. Earth Science Frontiers, 2018, 25(2): 204-209. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201802027.htm [8] 陈旭, 樊隽轩, 张元动, 等. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J]. 地层学杂志, 2015, 39(4): 351-358.CHEN Xu, FAN Junxuan, ZHANG Yuandong, et al. Subdivision and delineation of the Wufeng and Longmaxi black shales in the subsurface areas of the Yangtze Platform[J]. Journal of Stratigraphy, 2015, 39(4): 351-358. [9] 龙胜祥, 冯动军, 李凤霞, 等. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201804001.htmLONG Shengxiang, FENG Dongjun, LI Fengxia, et al. Prospect of the deep marine shale gas exploration and development in the Sichuan Basin[J]. Natural Gas Geoscience, 2018, 29(4): 443-451. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201804001.htm [10] 窦高磊. 深层高压页岩气吸附规律研究[D]. 西安: 西安石油大学, 2019: 25-26.DOU Gaolei. A study on adsorption law of deep high pressure shale gas[D]. Xi'an: Xi'an Shiyou University, 2019: 25-26. [11] 俞凌杰, 范明, 陈红宇, 等. 富有机质页岩高温高压重量法等温吸附实验[J]. 石油学报, 2015, 36(5): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201505004.htmYU Lingjie, FAN Ming, CHEN Hongyu, et al. Isothermal adsorption experiment of organic-rich shale under high temperature and pressure using gravimetric method[J]. Acta Petrolei Sinica, 2015, 36(5): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201505004.htm [12] 陈亚琳, 郁飞, 罗兵, 等. 四川盆地涪陵地区页岩储层压力预测及高压形成机制分析[J]. 石油实验地质, 2018, 40(1): 110-117. doi: 10.11781/sysydz201801110CHEN Yalin, YU Fei, LUO Bing, et al. Formation pressure prediction and high pressure formation mechanisms of shale reservoirs in Fuling area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2018, 40(1): 110-117. doi: 10.11781/sysydz201801110 [13] 胡华锋, 胡起, 林正良. 页岩气储层地层压力预测方法及其在四川盆地的应用[J]. 石油物探, 2018, 57(3): 362-368. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201803006.htmHU Huafeng, HU Qi, LIN Zhengliang. Pore pressure prediction for shale gas reservoirs and its application in the Sichuan Basin, China[J]. Geophysical Prospecting For Petroleum, 2018, 57(3): 362-368. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201803006.htm [14] 徐明, 朱传庆, 田云涛, 等. 四川盆地钻孔温度测量及现今地热特征[J]. 地球物理学报, 2011, 54(4): 1052-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201104022.htmXU Ming, ZHU Chuanqing, TIAN Yuntao, et al. Borehole temperature logging and characteristics of subsurface temperature in the Sichuan Basin[J]. Chinese Journal of Geophysics, 2011, 54(4): 1052-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201104022.htm [15] 刘操, 张玉贵, 贾天让, 等. 气源岩吸附试验的机理及吸附特征新认识[J]. 煤炭学报, 2019, 44(11): 3441-3452.LIU Cao, ZHANG Yugui, JIA Tianrang, et al. New interpretation of adsorption test mechanism and adsorption law for gas source rock[J]. Journal of China Coal Society, 2019, 44(11): 3441-3452. [16] 李希建, 尹鑫, 李维维, 等. 页岩对甲烷高温高压等温吸附的热力学特性[J]. 煤炭学报, 2018, 43(S1): 229-235. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2018S1027.htmLI Xijian, YIN Xin, LI Weiwei, et al. Thermodynamic characte-ristics of isothermal adsorption of methane at high temperature and pressure in shale[J]. Journal of China Coal Society, 2018, 43(S1): 229-235. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2018S1027.htm [17] CLARKSON C R, HAGHSHENAS B. Modeling of supercritical fluid adsorption on organic-rich shales and coal[R]. The Woodlands: SPE, 2013. [18] 余川, 周洵, 方光建, 等. 地层温压条件下页岩吸附性能变化特征: 以渝东北地区龙马溪组为例[J]. 岩性油气藏, 2018, 30(6): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201806002.htmYU Chuan, ZHOU Xun, FANG Guangjian, et al. Adsorptivity of shale under the formation temperature and pressure: a case of Longmaxi Formation in northeastern Chongqing[J]. Lithologic Reservoirs, 2018, 30(6): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201806002.htm [19] GASPARIK M, GHANIZADEH A, BERTIER P, et al. High-pressure methane sorption isotherms of black shales from the Netherlands[J]. Energy & Fuels, 2012, 26(8): 4995-5004. [20] 杨文新, 李继庆, 苟群芳. 四川盆地焦石坝地区页岩吸附特征室内实验[J]. 天然气地球科学, 2017, 28(9): 1350-1355. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201709007.htmYANG Wenxin, LI Jiqing, GOU Qunfang. Experiment study on shale adsorption properties for Jiaoshiba shale, Sichuan Basin[J]. Natural Gas Geoscience, 2017, 28(9): 1350-1355. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201709007.htm [21] 孙焕泉, 周德华, 蔡勋育, 等. 中国石化页岩气发展现状与趋势[J]. 中国石油勘探, 2020, 25(2): 14-26.SUN Huanquan, ZHOU Dehua, CAI Xunyu, et al. Progress and prospect of shale gas development of SINOPEC[J]. China Petroleum Exploration, 2020, 25(2): 14-26. [22] 庞小婷, 陈国辉, 许晨曦, 等. 涪陵地区五峰组—龙马溪组页岩吸附—游离气定量评价及相互转化[J]. 石油与天然气地质, 2019, 40(6): 1247-1258.PANG Xiaoting, CHEN Guohui, XU Chenxi, et al. Quantitative evaluation of adsorbed and free gas and their mutual conversion in Wufeng-Longmaxi shale, Fuling area[J]. Oil & Gas Geology, 2019, 40(6): 1247-1258. [23] 高和群, 丁安徐, 陈云燕. 页岩气解析规律及赋存方式探讨[J]. 高校地质学报, 2017, 23(2): 285-295. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201702011.htmGAO Hequn, DING Anxu, CHEN Yunyan. Discussion on the rules of gas desorption and occurrence mode in shales[J]. Geological Journal of China Universities, 2017, 23(2): 285-295. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201702011.htm [24] 赵金洲, 沈骋, 任岚, 等. 页岩储层不同赋存状态气体含气量定量预测: 以四川盆地焦石坝页岩气田为例[J]. 天然气工业, 2017, 37(4): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201704006.htmZHAO Jinzhou, SHEN Cheng, REN Lan, et al. Quantitative prediction of gas contents in different occurrence states of shale reservoirs: a case study of the Jiaoshiba shale gasfield in the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(4): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201704006.htm