An improved method and indications for the compound specific isotopic analysis of hopanes in source rock extracts
-
摘要: 以5Å分子筛/氧化铝混合填料的层析柱对烃源岩抽提物进行了分离,成功获取了以藿烷类化合物为主的亚组分,可直接用于单化合物碳同位素分析。通过对典型海、陆相烃源岩中的藿烷碳同位素特征进行对比研究,结果表明准噶尔盆地二叠系芦草沟组湖相页岩中藿烷系列单体化合物的碳同位素值(δ13C)分布在-40.7‰~-62.7‰,且呈现出随着碳数的增加同位素值变轻的特点;而川西北二叠系海相页岩中藿烷化合物δ13C则相对较重,分布在-20.5‰~-45.4‰,具有随碳数增加先变轻再变重的趋势。两类页岩中藿烷类化合物的碳同位素变化幅度可达±20‰以上,尤其是川西北二叠系海相页岩中藿烷类化合物单体碳同位素的差异可达到±24.9‰,表明藿烷类化合物具有明显的多源特征。藿烷类化合物的分子碳同位素受到原始沉积环境、母质来源与演化过程的影响而可能具有较大的差异,但这并不影响其有望成为新的油源对比指标。Abstract: With a mixed stationary phase of 5Å molecular sieve/alumina, extracts of various kinds of source rocks are separated by column and sub-fractions dominated by hopanoid compounds were successfully obtained. The sub-fractions are suitable for the direct analysis on GC-IRMS to obtain compound specific isotopic values of hopanes. Comparison is carried out on isotopic signatures of specific hopanes in a lacustrine oil shale (Permian Lucaogou shale, Junggar Basin, NW China) and another Permian marine shale (NW of Sichuan Basin). Results show that the Permian Lucaogou shale had the δ13C values of hopanes distributed between -40.7‰ and -62.7‰, and decrease with the increasing of carbon number. The δ13C values of hopanes in marine shale of Sichuan Basin are apparently heavier, distribute between -20.5‰ and -45.4‰, and they appeared to be firstly decreased and then increased as carbon number increases. In both of the shales analyzed, the variation range of carbon isotopes of hopanes can be more than ±20‰ (±24.9‰ for the Sichuan Basin shale), which indicates multiple contribution to these compounds. The isotopic signatures of hopanes may be constrained by paleoenvironment, sources as well as maturation, however, compound specific isotope of hopanes is still a useful indicator for oil-source correlation.
-
Key words:
- bacteria /
- hopanoid compounds /
- carbon isotope /
- marine source rock /
- continental source rocks /
- Sichuan Basin /
- Junggar Basin
-
图 3 准噶尔盆地二叠系芦草沟组湖相烃源岩藿烷化合物GC-IRMS测定谱图
图中数字表示的化合物见图 2。
Figure 3. GC-IRMS chromatogram of hopanes in lacustrine source rocks from Permian Lucaogou Formation, Junggar Basin
表 1 实验样品地球化学信息
Table 1. Basic geochemical parameters of experimental samples
序号 样品编号 地区 层位 ω(TOC)/% S1/(mg·g-1) S2/(mg·g-1) Tmax/℃ Ro/% 1 KSL 川西北 P2d 6.82 1.15 46.49 448 0.65 2 J36-6 吉木萨尔凹陷 P2l 2.21 9.25 12.05 442 0.85 3 J36-11 吉木萨尔凹陷 P2l 1.16 6.36 5.59 433 0.90 -
[1] BJOR∅Y M, HALL P B, HUSTAD E, et al. Variation in stable carbon isotope ratios of individual hydrocarbons as a function of artificial maturity[J]. Organic Geochemistry, 1992, 19(1/3): 89-105. [2] BRIGGS D E G, SUMMONS R E. Ancient biomolecules: their origins, fossilization, and role in revealing the history of life[J]. Bioessays, 2014, 36(5): 482-490. doi: 10.1002/bies.201400010 [3] 史继扬, 向明菊, 周友平. 生物标志物藿烷类的单体碳稳定同位素研究[J]. 沉积学报, 2000, 18(2): 310-313. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200002023.htmSHI Jiyang, XIANG Mingju, ZHOU Youping. Study on carbon isotopic ratio of individual compound in hopanes[J]. Acta Sedimentologica Sinica, 2000, 18(2): 310-313. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200002023.htm [4] OBA Y, NARAOKA H. Carbon and hydrogen isotopic fractionation of low molecular weight organic compounds during ultraviolet degradation[J]. Organic Geochemistry, 2008, 39(5): 501-509. doi: 10.1016/j.orggeochem.2007.11.009 [5] 卢鸿, 柴平霞, 孙永革, 等. 轮南14井原油正构烷烃和类异戊二烯单体碳同位素研究[J]. 沉积学报, 2002, 20(3): 477-481. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200203019.htmLU Hong, CHAI Pingxia, SUN Yongge, et al. Study on stable carbon isotopic compositions of n-alkanes and isoprenoids for crude oils from well Lunnan 14, Tarim Basin[J]. Acta Sedimentologica Sinica, 2002, 20(3): 477-481. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200203019.htm [6] CLAYTON C J, BJOR∅Y M. Effect of maturity on 12C/13C ratios of individual compounds in North Sea oils[J]. Organic Geochemistry, 1994, 21(6/7): 737-750. [7] BRECK D W. Zeolite molecular sieves: structure, chemistry and use[M]. New York: Wiley, 1974. [8] XIE S, NOTT C J, AVSEJS L A, et al. Palaeoclimate records in compound-specific δD values of a lipid biomarkers in ombrotrophic peat[J]. Organic Geochemistry, 2000, 31(10): 1053-1057. doi: 10.1016/S0146-6380(00)00116-9 [9] HUANG Yongsong. Glacial-interglacial environmental changes inferred from molecular and compound-specific δ13C analyses of sediments from Sacred Lake, Mt. Kenya[J]. Geochimica et Cosmochimica Acta, 1999, 63(9): 1383-1404. doi: 10.1016/S0016-7037(99)00074-5 [10] EGLINTON G, HAMILTON R J. Leaf epicuticular waxes[J]. Science, 1967, 156(3780): 1322-1335. doi: 10.1126/science.156.3780.1322 [11] RIELLEY G, COLLIER R J, JONES D M, et al. The biogeochemistry of Ellesmere Lake, UK: source correlation of leaf wax inputs to the sedimentary lipid record[J]. Organic Geochemistry, 1991, 17(6): 901-912. doi: 10.1016/0146-6380(91)90031-E [12] YAMADA K, ISHIWATARI R. Carbon isotopic compositions of long-chain n-alkanes in the Japan Sea sediments: implication for paleoenvironmental changes over the past 85 kyr[J]. Organic Geochemistry, 1990, 30(5): 367-377. [13] 薛建涛. 湿地沉积脂类分布特征及古环境意义: 以植物正构烷烃和微生物藿类为例[D]. 武汉: 中国地质大学, 2018.XUE Jiantao. The distribution of sedimentary lipids in wetland and their paleoenvironment implications: take plant n-alkanes and microbial hopanoids as an example[D]. Wuhan: China University of Geosciences, 2018. [14] 段毅, 马兰华. 生物标志化合物碳同位素地球化学研究的几个相关问题[J]. 地球科学进展, 1996, 11(4): 356-361. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ604.005.htmDUAN Yi, MA Lanhua. Several problems concerned with stable carbon isotopic geochemistry of biomarker compounds[J]. Advances in Earth Sciences, 1996, 11(4): 356-361. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ604.005.htm [15] 郭志刚, 杨作升, 林田, 等. 东海泥质区单体正构烷烃的碳同位素组成及物源分析[J]. 第四纪研究, 2006, 26(3): 384-390. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200603008.htmGUO Zhigang, YANG Zuosheng, LIN Tian, et al. Compound-specific carbon isotope compositions of individual n-alkanes in the East China Sea Mud area[J]. Quaternary Research, 2006, 26(3): 384-390. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200603008.htm [16] HOFREITER M, COLLINS M, STEWART J R. Ancient biomolecules in quaternary palaeoecology[J]. Quaternary Science Reviews, 2012, 33: 1-13. [17] CRANWELL P A. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change[J]. Freshwater Biology, 1973, 3(3): 259-265. [18] 盛国英, 卢鸿, 廖晶, 等. 地质体中藿烷类新化合物研究进展[J]. 地球化学, 2019, 48(5): 421-446. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201905001.htmSHENG Guoying, LU Hong, LIAO Jing, et al. Advances on novel hopanoids present in geological bodies[J]. Geochemica, 2019, 48(5): 421-446. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201905001.htm [19] 张文正. 石油轻烃单体和正构烷烃系列分子碳同位素分析与研究[J]. 矿物岩石地球化学通报, 1992(3): 131-133. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH199203001.htmZHANG Wenzheng. Analysis and study on carbon isotopes of light hydrocarbon monomers and n-alkanes in petroleum[J]. Mineralogy, Petrology and Geochemistry Communication, 1992(3): 131-133. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH199203001.htm [20] BJORV∅Y M, HALL K, JUMEAU J. Stable carbon isotope ratio analysis on single components in crude oils by direct gas chromatography-isotope analysis[J]. TrAC Trends in Analytical Chemistry, 1990, 9(10): 331-337. [21] 殷鸿福. 生物地质学[J]. 地球科学进展, 1994, 9(6): 79-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ406.012.htmYIN Hongfu. Biogeology[J]. Advances in Earth Science, 1994, 9(6): 79-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ406.012.htm [22] PEARSON A, PAGE S R F, JORGENSON T L, et al. Novel hopanoid cyclases from the environment[J]. Environmental Microbiology, 2007, 9(9): 2175-2188. [23] BELIN B J, BUSSET N, GIRAUD E, et al. Hopanoid lipids: from membranes to plant-bacteria interactions[J]. Nature Reviews Microbiology, 2018, 16(5): 304-315. [24] 段毅, 罗斌杰. 生物标志化合物稳定碳同位素地球化学[J]. 地质地球化学, 1995(3): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199503009.htmDUAN Yi, LUO Binjie. Stable carbon isotope geochemistry of biomarkers[J]. Geochemistry, 1995(3): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199503009.htm [25] 杜丽, 孟仟祥, 李玉梅, 等. 吐哈盆地煤岩饱和烃络合后生标碳同位素分布特征[J]. 甘肃科学学报, 2008, 20(4): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKX200804019.htmDU Li, MENG Qianxiang, LI Yumei, et al. Distribution characteristics of carbon isotopic for biomarkers from the n-alkanes after complex in coal in Turpan-Hami Basin[J]. Journal of Gansu Science, 2008, 20(4): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKX200804019.htm [26] WANG L, SONG Z G, CAO X X, et al. Compound specific carbon isotope study on the hydrocarbon biomarkers in lacustrine source rocks from Songliao Basin[J]. Organic Geochemistry, 2015, 87: 68-77. [27] 王汇彤, 魏彩云, 张水昌, 等. 国产Y型分子筛对甾烷、藿烷的吸附和脱附研究[J]. 石油实验地质, 2010, 32(1): 72-75. doi: 10.11781/sysydz201001071WANG Huitong, WEI Caiyun, ZHANG Shuichang, et al. The study on adsorption and de-adsorption behavior of some biomarkers on different type-Y Chinese molecular sieves[J]. Petroleum Geology & Experiment, 2010, 32(1): 72-75. doi: 10.11781/sysydz201001071 [28] BJOR∅Y M. Stable carbon isotope variation of n-alkanes in central Graben oils[J]. Organic Geochemistry, 1994, 22(3/5): 355-381. [29] OURISSON G. The evolution of terpenes to sterols[J]. Pure and Applied Chemistry, 2013, 61(3): 345-348. [30] XIE Xiaomin, BORJIGINA T, ZHANG Zhirong, et al. Intact microbial fossils in the Permian Lucaogou Formation oil shale, Junggar Basin, NW China[J]. International Journal of Coal Geology, 2015, 146: 166-178. [31] LIU Bo, BECHTEL A, SACHSENHOFER R F, et al. Depositional environment of oil shale within the second member of Permian Lucaogou Formation in the Santanghu Basin, Northwest China[J]. International Journal of Coal Geology, 2017, 175: 10-25. [32] FREEMAN K H, WAKEHAM S G, HAYES J M. Predictive isotopic biogeochemistry: hydrocarbons from anoxic marine basins[J]. Organic Geochemistry, 1994, 21(6/7): 629-644. [33] CHUNG H M, CLAYPOOL G E, ROONEY M A, et al. Source characteristics of marine oils as indicated by carbon isotopic ratios of volatile hydrocarbons[J]. AAPG Bulletin, 1994, 78(3): 396-408. [34] WILHELMS A, LARTER S R, HALL K. A comparative study of the stable carbon isotopic composition of crude oil alkanes and associated crude oil asphaltene pyrolysate alkanes[J]. Organic Geochemistry, 1994, 21(6/7): 751-760. [35] ZHOU Qianzhi, LI Yan, CHEN Fang, et al. Geochemical significance of biomarkers in the methane hydrate-bearing sediments from the Shenhu area, the South China Sea[J]. Molecules, 2019, 24(456): 1-12. [36] 段毅, 吴保祥, 徐丽, 等. 不同纬度地区植物中正构烷烃及其同位素组成[J]. 地质学报, 2011, 85(2): 262-271. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201102013.htmDUAN Yi, WU Baoxiang, XU Li, et al. Compositions of n-alkanes and their isotopes in plants from the different latitude regions in China[J]. Acta Geologica Sinica, 2011, 85(2): 262-271. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201102013.htm [37] 张林晔, 洪志华, 廖永胜, 等. 八面河低成熟油生物标志化合物碳同位素分析和研究[J]. 地质地球化学, 1996(6): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199606015.htmZHANG Linye, HONG Zhihua, LIAO Yongsheng, et al. Carbon isotope analysis and study of biomarkers from bamianhe low mature oil[J]. Geochemistry, 1996(6): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199606015.htm [38] 王汇彤, 游建昌, 王培荣, 等. 饱和烃和芳烃的高压液相色谱法精细分离[J]. 石油实验地质, 2003, 25(2): 221-224. doi: 10.11781/sysydz200302221WANG Huitong, YOU Jianchang, WANG Peirong, et al. Fine separation of saturated hydrocarbon and aromatic hydrocarbon by high performance liquid chromatography[J]. Petroleum Geology & Experiment, 2003, 25(2): 221-224. doi: 10.11781/sysydz200302221 [39] 别道哲, 曹建平, 郑伦举. 原油及生油岩族组分旋转薄层色谱分析[J]. 石油实验地质, 1999, 21(2): 184-185. doi: 10.11781/sysydz199902185BIE Daozhe, CAO Jianping, ZHENG Lunju. Analysis of whirl thin layer chromatography for group composition of crude oil and source rocks[J]. Experimental Petroleum Geology, 1999, 21(2): 184-185. doi: 10.11781/sysydz199902185 [40] 张志荣, 宋晓莹, 张渠. 生物标志化合物色谱—质谱定量分析研究[J]. 石油实验地质, 2008, 30(4): 405-407. doi: 10.11781/sysydz200804405ZHANG Zhirong, SONG Xiaoying, ZHANG Qu. GC-MS quantitative analysis of biomarkers[J]. Petroleum Geology & Experiment, 2008, 30(4): 405-407. doi: 10.11781/sysydz200804405