Molecular composition of asphaltene in wellbore blockage on the southern margin of Junggar Basin
-
摘要: 采用傅里叶变换离子回旋共振质谱分析技术,分析了准噶尔盆地南缘高探1井原油及井筒堵塞物抽提物中沥青质化学组成及差异,探讨了沥青质的组成及结构与沥青质沉积关系,对于沥青质聚集理论研究具有重要意义。研究结果显示,高探1井原油及井筒堵塞物抽提物中沥青质分子主要为N1、N1O1、O1、O2、O3和O4类化合物,但堵塞物抽提物中沥青质缩合度(DBE)明显高于原油中沥青质,具有更多的环烷和芳环结构,且富集O2、O3和O4类化合物,表明地层原油在井筒流动过程中不同组成的沥青质具有一定的选择性。高缩合度沥青质组分优先析出,形成固体母核,其中多氧杂原子具有极强的极性,加速原油中其他沥青质组分的沉淀,从而形成堵塞物。另外,堵塞物抽提物中沥青质分子结构复杂,具有较宽的缩合度分布范围,DBE主要分布在9~30,其分子极性力参数较大,且分布范围宽,因此选取分子极性力参数相近的混合溶剂去除堵塞物较为理想。
-
关键词:
- 傅里叶变换离子回旋共振质谱 /
- 沥青质 /
- 井筒堵塞物 /
- 准噶尔盆地
Abstract: Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) was employed to analyze the compositional differences of asphaltene of oil and blockage extracts of well Gaotan 1 on the southern margin of Junggar Basin. The correlation between asphaltene composition and structure and precipitation was discussed, which is important for the research of asphaltene precipitation and accumulation. Results showed that the asphaltene molecules of oil and blockage extracts of well Gaotan 1 are mainly composed of N1, N1O1, O1, O2, O3 and O4 class species. However, the degree of asphaltene condensation in blockage extract is significantly higher than that in oil, and it is enriched with O2, O3 and O4 class species. It indicates that during the flow of formation crude oil in wellbore, the precipitation of asphaltenes with different compositions has a certain selectivity. Asphaltene components with high condensation degree preferentially precipitate and deposit, forming a solid core. Among them, polyoxo-heteroatom compounds have relative strong polarity, which accelerates the precipitation of other asphaltene components in crude oil to form blockage. Asphaltene in blockage extract has a complex molecular structure and a wide range of condensation degree. The DBE values distribute between 9 and 30. Its molecular polar force parameter is larger and the distribution range is wider. Therefore, it is ideal to select a mixed solvent similar to the polar force parameter of blockage asphaltene to remove blockage. -
表 1 准噶尔盆地高探1井原油及堵塞物抽提物族组分和有机元素特征
Table 1. Composition and organic element of crude oil and blockage extracts in well Gaotan 1, Junggar Basin
样品 族组分/% 有机元素含量/% 饱和烃 芳烃 非烃 沥青质 C H N O 原油 70.28 14.15 8.02 7.55 86.39 13.89 0.06 0.69 堵塞物抽提物 20.48 5.11 2.36 72.05 87.84 7.65 0.70 3.23 -
[1] 雷德文, 张健, 陈能贵, 等. 准噶尔盆地南缘下组合成藏条件与大油气田勘探前景[J]. 天然气工业, 2012, 32(2): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201202005.htmLEI Dewen, ZHANG Jian, CHEN Nenggui, et al. Conditions for gas pooling in the lower assemblage in the southern margin of the Junggar Basin and the exploration prospect of large hydrocarbon fields[J]. Natural Gas Industry, 2012, 32(2): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201202005.htm [2] 杜金虎, 支东明, 李建忠, 等. 准噶尔盆地南缘高探1井重大发现及下组合勘探前景展望[J]. 石油勘探与开发, 2019, 46(2): 205-215. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201902003.htmDU Jinhu, ZHI Dongming, LI Jianzhong, et al. Major breakthrough of well Gaotan 1 and exploration prospects of lower assemblage in southern margin of Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(2): 205-215. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201902003.htm [3] 杨迪生, 肖立新, 阎桂华, 等. 准噶尔盆地南缘四棵树凹陷构造特征与油气勘探[J]. 新疆石油地质, 2019, 40(2): 138-144. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201902002.htmYANG Disheng, XIAO Lixin, YAN Guihua, et al. Structural characteristics and petroleum exploration in Sikeshu Sag, southern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(2): 138-144. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201902002.htm [4] 李二庭, 蒋宜勤, 林莉莉, 等. 高温高压油藏井壁沉淀物成因研究: 以准噶尔盆地高探1井为例[J]. 石油实验地质, 2020, 42(6): 965-971. doi: 10.11781/sysydz202006965LI Erting, JIANG Yiqin, LIN Lili, et al. Origin and significance of wellbore sediment in reservoir development: a case study of well Gaotan 1 in Junggar Basin[J]. Petroleum Geology & Experi-ment, 2020, 42(6): 965-971. doi: 10.11781/sysydz202006965 [5] 杜宗和, 伍喆, 李雪斌, 等. 准噶尔盆地南缘高探1井生产管柱凝结物分析与沉淀机理研究[J]. 辽宁化工, 2020, 49(2): 173-175. https://www.cnki.com.cn/Article/CJFDTOTAL-LNHG202002038.htmDU Zonghe, WU Zhe, LI Xuebin, et al. Condensate analysis and precipitation mechanism research in production pipe column in GT 1 well in the southern margin of Junggar Basin[J]. Liaoning Chemical Industry, 2020, 49(2): 173-175. https://www.cnki.com.cn/Article/CJFDTOTAL-LNHG202002038.htm [6] 卢贵武, 李英峰, 宋辉, 等. 石油沥青质聚沉的微观机理[J]. 石油勘探与开发, 2008, 35(1): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200801015.htmLU Guiwu, LI Yingfeng, SONG Hui, et al. Micromechanism of petroleum asphaltene aggregation[J]. Petroleum Exploration and Development, 2008, 35(1): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200801015.htm [7] 高建崇, 庞铭, 陈华兴, 等. 稀油反洗防井筒有机垢堵塞方法研究及应用[J]. 海洋石油, 2019, 39(2): 62-66.GAO Jianchong, PANG Ming, CHEN Huaxing, et al. Research and application of method which using thin oil backwashing wellbore to prevent organic precipitation blocking[J]. Offshore Oil, 2019, 39(2): 62-66. [8] 聂延波, 王洪峰, 王胜军, 等. 克深气田异常高压气井井筒异常堵塞治理[J]. 新疆石油地质, 2019, 40(1): 84-90. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901014.htmNIE Yanbo, WANG Hongfeng, WANG Shengjun, et al. Management of abnormal wellbore plugging in abnormal-high pressure gas wells, Keshen Gas Field[J]. Xinjiang Petroleum Geology, 2019, 40(1): 84-90. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901014.htm [9] 张宝, 匡韶华, 魏军会, 等. 连续油管解堵技术在克深区块超深高压气井中的应用[J]. 油气井测试, 2017, 26(6): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-YQJC201706014.htmZHANG Bao, KUANG Shaohua, WEI Junhui, et al. Application of coiled tubing plugging removal technique in ultra-deep high pressure gas well in Keshen block[J]. Well Testing, 2017, 26(6): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-YQJC201706014.htm [10] 郭元. 伊拉克格拉芙油田井筒堵塞机理研究[J]. 新疆石油天然气, 2017, 13(3): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY201703015.htmGUO Yuan. Mechanism study of wellbore asphaltenes plugging in Garraf Oilfield[J]. Xinjiang Oil & Gas, 2017, 13(3): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY201703015.htm [11] 杜俊涛, 张大奎, 张敏鑫, 等. 煤基和石油基C7-沥青质的结构特征及缔合行为[J]. 燃料化学学报, 2020, 48(6): 674-682. https://www.cnki.com.cn/Article/CJFDTOTAL-RLHX202006005.htmDU Juntao, ZHANG Dakui, ZHANG Minxin, et al. Structure characteristics and association behavior of coal and petroleum C7-asphaltenes[J]. Journal of Fuel Chemistry and Technology, 2020, 48(6): 674-682. https://www.cnki.com.cn/Article/CJFDTOTAL-RLHX202006005.htm [12] 贾雪娅, 马凤云, 洪琨, 等. 塔河常压渣油中不同沥青质的组成与结构研究[J]. 石油炼制与化工, 2018, 49(12): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLH201812016.htmJIA Xueya, MA Fengyun, HONG Kun, et al. Compositions and structures of different asphaltenes in Tahe atmospheric residue[J]. Petroleum Processing and Petrochemicals, 2018, 49(12): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLH201812016.htm [13] MARSH A G, HENDRICKSON C L, JACKSON G S. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: a primer[J]. Mass Spectrometry Reviews, 1998, 17(1): 1-35. [14] KIM S, STANFORD L A, RODGERS R P, et al. Microbial alteration of the acidic and neutral polar NSO compounds revealed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry[J]. Organic Geochemistry, 2005, 36(8): 1117-1134. [15] LIAO Yuhong, SHI Quan, HSU C S, et al. Distribution of acids and nitrogen-containing compounds in biodegraded oils of the Liaohe Basin by negative ion ESI FT-ICR MS[J]. Organic Geochemistry, 2012, 47: 51-65. [16] LI Maowen, CHENG Dingsheng, PAN Xiaohua, et al. Characterization of petroleum acids using combined FT-IR, FT-ICR-MS and GC-MS: implications for the origin of high acidity oils in the Muglad Basin, Sudan[J]. Organic Geochemistry, 2010, 41(9): 959-965. [17] KENDRICK E. A mass scale based on CH2=14.0000 for high resolution mass spectrometry of organic compounds[J]. Analytical Chemistry, 1963, 35(13): 2146-2154. [18] HUGHEY C A, HENDRICKSON C L, RODGERS R P, et al. Kendrick mass defect spectrum: a compact visual analysis for ultrahigh-resolution broadband mass spectra[J]. Analytical Chemistry, 2001, 73(19): 4676-4681. [19] 刘鹏, 黎茂稳, 孙永革, 等. 加拿大油砂沥青中极性化合物的电喷雾—高分辨质谱研究[J]. 石油实验地质, 2014, 36(1): 89-94. doi: 10.11781/sysydz201401089LIU Peng, LI Maowen, SUN Yongge, et al. Molecular characte-rization of polar species in Canadian oil sand bitumens by electrospray ionization and high resolution mass spectrometry[J]. Petroleum Geology & Experiment, 2014, 36(1): 89-94. doi: 10.11781/sysydz201401089 [20] 华朝, 张健, 李浩, 等. 渤海稠油及其组分中杂原子化合物的负离子电喷雾—高分辨质谱分析[J]. 分析测试学报, 2017, 36(6): 725-731. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201706005.htmHUA Zhao, ZHANG Jian, LI Hao, et al. Anlysis of heteroatomic compounds in Bohai heavy oil and its fractions by high resolution FT-ICR mass spectrometry with negative ion electrospray[J]. Journal of Instrumental Analysis, 2017, 36(6): 725-731. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201706005.htm [21] LI Shengke, PENG Bo, LIU Dan, et al. Resolution and identification of petroleum sulfonate by electrospray ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry[J]. Energy & Fuels, 2016, 30(4): 2751-2759. [22] 刘鹏, 黎茂稳, 孙永革, 等. 岩石抽提物中极性化合物超高分辨质谱识别[J]. 分析测试学报, 2014, 33(1): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201401011.htmLIU Peng, LI Maowen, SUN Yongge, et al. Characterization of polar species in rock extracts by Ultrahigh Resolution Mass Spectrometry[J]. Journal of Instrumental Analysis, 2014, 33(1): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201401011.htm [23] 蒋启贵, 刘鹏, 黎茂稳, 等. 烃源岩生成有机酸过程的高分辨质谱研究[J]. 地球化学, 43(6): 619-627. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201406006.htmJIANG Qigui, LIU Peng, LI Maowen, et al. Characterizing thermal evolution of acid species in hydrocarbon source rock by using negative-ion ESI FT-ICR MS[J]. Geochimica, 43(6): 619-627. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201406006.htm [24] 陈燕燕, 胡素云, 李建忠, 等. 原油裂解过程中组分演化模型及金刚烷类化合物的地球化学特征[J]. 天然气地球科学, 2018, 29(1): 114-121. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201801011.htmCHEN Yanyan, HU Suyun, LI Jianzhong, et al. Compositional evolution and geochemical characteristics of diamondoids during oil cracking[J]. Natural Gas Geoscience, 2018, 29(1): 114-121. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201801011.htm [25] 叶宇威, 赵楠, 栾辉, 等. 有机溶剂浸取石油污染土壤中的多环芳烃[J]. 化工环保, 2019, 39(5): 545-551. https://www.cnki.com.cn/Article/CJFDTOTAL-HGHB201905010.htmYE Yuwei, ZHAO Nan, LUAN Hui, et al. Leaching of polycyclic aromatic hydrocarbons from petroleum-contaminated soil using organic solvent[J]. Environmental Protection of Chemical Industry, 2019, 39(5): 545-551. https://www.cnki.com.cn/Article/CJFDTOTAL-HGHB201905010.htm [26] 史军军, 葸雷, 吴巍, 等. 催化裂化轻循环油萃取脱芳烃的溶剂选择[J]. 石油炼制与化工, 2020, 51(8): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLH202008002.htmSHI Junjun, XI Lei, WU Wei, et al. Solvent selection for aromatic extraction from light cycle oil[J]. Petroleum Processing and Petrochemicals, 2020, 51(8): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLH202008002.htm