留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

塔斯马尼亚油页岩生烃模拟排出油与滞留油地球化学对比Ⅱ:分子地球化学特征

吴芬婷 谢小敏 徐耀辉 林静文 张雷 许锦 马中良

吴芬婷, 谢小敏, 徐耀辉, 林静文, 张雷, 许锦, 马中良. 塔斯马尼亚油页岩生烃模拟排出油与滞留油地球化学对比Ⅱ:分子地球化学特征[J]. 石油实验地质, 2022, 44(2): 314-323. doi: 10.11781/sysydz202202314
引用本文: 吴芬婷, 谢小敏, 徐耀辉, 林静文, 张雷, 许锦, 马中良. 塔斯马尼亚油页岩生烃模拟排出油与滞留油地球化学对比Ⅱ:分子地球化学特征[J]. 石油实验地质, 2022, 44(2): 314-323. doi: 10.11781/sysydz202202314
WU Fenting, XIE Xiaomin, XU Yaohui, LIN Jingwen, ZHANG Lei, XU Jin, MA Zhongliang. A comparative study on the geochemical characteristics of expelled and retained oil from hydrocarbon generation simulation of Australian Tasmanian oil shale Ⅱ: molecular geochemical characteristics[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(2): 314-323. doi: 10.11781/sysydz202202314
Citation: WU Fenting, XIE Xiaomin, XU Yaohui, LIN Jingwen, ZHANG Lei, XU Jin, MA Zhongliang. A comparative study on the geochemical characteristics of expelled and retained oil from hydrocarbon generation simulation of Australian Tasmanian oil shale Ⅱ: molecular geochemical characteristics[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(2): 314-323. doi: 10.11781/sysydz202202314

塔斯马尼亚油页岩生烃模拟排出油与滞留油地球化学对比Ⅱ:分子地球化学特征

doi: 10.11781/sysydz202202314
基金项目: 

中国自然科学基金面上项目 41972163

中国自然科学基金面上项目 42173055

详细信息
    作者简介:

    吴芬婷(1997—),女,在读硕士研究生,地球化学专业。E-mail: wufenting_w@sina.com

    通讯作者:

    谢小敏(1984—), 女, 博士, 教授, 从事有机岩石学与地球化学研究。E-mail: xiaominxie2019@sina.com

  • 中图分类号: TE122.1

A comparative study on the geochemical characteristics of expelled and retained oil from hydrocarbon generation simulation of Australian Tasmanian oil shale Ⅱ: molecular geochemical characteristics

  • 摘要: 澳大利亚塔斯马尼亚油页岩为一套特殊的富含单种浮游藻类(塔斯马尼亚藻)的烃源岩,原始油页岩样品等效镜质体反射率为0.5%,是进行热模拟的理想样品。为对比分析不同模拟温度下排出油和滞留油的分子地球化学特征,对该油页岩样品开展生排烃模拟实验。研究结果显示:(1)原始样品抽提物与滞留油分子标志物指示还原环境,排出油则显示出还原与氧化的混合来源特征。(2)生物标志物成熟度参数,C29甾烷20S/(20S+20R)、C29藿烷ββ/(αα+ββ)和Ts/(Ts+Tm)显示滞留油和排出油在350 ℃时为成熟阶段;在生烃高峰前(≤350 ℃)滞留油成熟度指标随温度的升高而升高,而在排出油中相关性较差;在350 ℃以后滞留油与排出油成熟度指标与模拟温度均无相关性。(3)油源对比参数,滞留油与排出油饱和烃甾烷分布特征C27、C28、C29规则甾烷分布随温度的升高均表现出从反“L”型逐渐过渡为不对称近“V”型,再过渡到正“L”型的分布模式;同一温度下,滞留油与排出油之间具有较好的可对比性。因此,同一成熟度阶段,甾烷分布特征能有效地进行油源对比;而不同成熟度下,排出油与滞留油的可对比性差异明显。该研究揭示了生物标志化合物在排出油与滞留油之间的差异性,以及模拟温度对生物标志化合物指标的影响;在用分子化合物进行沉积环境、成熟度及油源对比研究时,需要重视成熟度对分子化合物参数的影响,尤其是在生油高峰以后,分子化合物参数指标可能难以有效适用。

     

  • 图  1  原始样品A生烃热模拟产烃率曲线

    Figure  1.  Hydrocarbon generation rates of Tasmanite oil shale A in thermal simulation

    图  2  滞留油与排出油饱和烃气相色谱图

    Figure  2.  Gas chromatograms of saturated hydrocarbons for expelled and retained oil

    图  3  滞留油与排出油萜烷质谱图

    Figure  3.  Mass spectra of terpenes for expelled and retained oil

    图  4  滞留油与排出油甾烷质谱图

    Figure  4.  Mass spectra of steranes for expelled and retained oil

    图  5  热模拟实验样品滞留油与排出油正构烷烃参数随温度变化规律

    Figure  5.  Variation of normal paraffin parameters of expelled and retained oil with temperature in thermal simulation experiment

    图  6  热模拟实验中滞留油与排出油各参数随温度变化关系

    图 6a的图版引自参考文献[27];Ⅰ、Ⅱ1为海相,Ⅱ 2为混合相,Ⅲ为陆相

    Figure  6.  Relationship between parameters of expelled and retained oil with temperature in thermal simulation experiment

    表  1  原始样品A和热模拟实验样品饱和烃色谱参数

    Table  1.   Saturated hydrocarbon chromatographic parameters of original sample A and samples after thermal simulation experiment

    液体烃 模拟温度/℃ 主峰碳 OEP Pr/nC17 Ph/nC18 Pr/Ph nC21-/∑nC22+ 碳数分布范围 峰形
    原始样品 16 0.88 0.89 1.05 0.99 1.36 C14—C29 双峰型
    滞留油 300 24 0.68 0.50 0.71 0.70 1.03 C13—C36 单峰型
    320 24 0.75 0.39 0.59 0.57 0.95 C13—C36 单峰型
    340 19 1.04 0.17 0.17 0.88 1.40 C14—C35 单峰型
    350 19 1.01 0.12 0.09 1.01 1.13 C13—C36 单峰型
    375 18 1.03 0.10 0.06 1.44 2.14 C13—C37 单峰型
    400 19/22 1.05 0.12 0.15 0.59 1.38 C15—C36 双峰型
    排出油 300 19 1.96 0.82 0.46 1.87 2.83 C14—C36 单峰型
    320 19 2.11 0.71 0.45 2.14 4.98 C12—C36 单峰型
    340 14 1.04 0.27 0.23 1.43 4.80 C12—C35 单峰型
    350 14 0.85 0.22 0.13 1.87 5.21 C12—C37 单峰型
    375 13 1.29 0.17 0.10 1.88 5.36 C11—C37 单峰型
    400 15/20 0.99 0.40 0.10 4.07 2.06 C12—C38 双峰型
    下载: 导出CSV
  • [1] TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. Berlin: Springer, 1984.
    [2] CONNAN J. Time-temperature relation in oil genesis: geologic notes[J]. AAPG Bulletin, 1974, 58(12): 2516-2521.
    [3] WAPLES D W. Time and temperature in petroleum formation: application of Lopatin's method to petroleum exploration: reply[J]. AAPG Bulletin, 1982, 66(8): 1152.
    [4] 赵晗, 马中良, 郑伦举, 等. 有限空间温压共控热模拟油气产物地球化学特征[J]. 天然气地球科学, 2020, 31(1): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202001007.htm

    ZHAO Han, MA Zhongliang, ZHENG Lunju, et al. Geochemical characteristics of hydrocarbon products under thermal simulation of temperature and pressure co-control in finite space[J]. Natural Gas Geoscience, 2020, 31(1): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202001007.htm
    [5] 金强, 张慧君, 程付启, 等. 陆相泥质烃源岩液态烃生成—排出—滞留模拟实验及其地质意义[J]. 中国石油大学学报(自然科学版), 2019, 43(5): 44-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201905006.htm

    JIN Qiang, ZHANG Huijun, CHENG Fuqi, et al. Stimulations on generation, expulsion and retention of liquid hydrocarbons in source rocks deposited in lacustrine basin and their significance in petroleum geology[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(5): 44-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201905006.htm
    [6] 马中良, 申宝剑, 潘安阳, 等. 四川盆地五峰组—龙马溪组页岩气成因与碳同位素倒转机制: 来自热模拟实验的认识[J]. 石油实验地质, 2020, 42(3): 428-433. doi: 10.11781/sysydz202003428

    MA Zhongliang, SHEN Baojian, PAN Anyang, et al. Origin and carbon isotope reversal of shale gas in Wufeng-Longmaxi formations, Sichuan Basin: implication from pyrolysis experiments[J]. Petroleum Geology & Experiment, 2020, 42(3): 428-433. doi: 10.11781/sysydz202003428
    [7] 肖七林, 刘安, 李楚雄, 等. 高演化页岩纳米孔隙在过熟阶段的形成演化特征及主控因素: 中扬子地区寒武系水井沱组页岩含水热模拟实验[J]. 地球科学, 2020, 45(6): 2160-2171. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006027.htm

    XIAO Qilin, LIU An, LI Chuxiong, et al. Formation and evolution of nanopores in highly matured shales at over-mature stage: insights from the hydrous pyrolysis experiments on Cambrain Shuijintuo shale from the Middle Yangtze region[J]. Earth Science, 2020, 45(6): 2160-2171. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006027.htm
    [8] 范明, 黄继文, 陈正辅. 塔里木盆地库车坳陷烃源岩热模拟实验及油气源对比[J]. 石油实验地质, 2009, 31(5): 518-521. doi: 10.11781/sysydz200905518

    FAN Ming, HUANG Jiwen, CHEN Zhengfu. Thermal simulating experiment of source rock and gas source correlation in the Kuqa Depression of the Tarim Basin[J]. Petroleum Geology & Experiment, 2009, 31(5): 518-521. doi: 10.11781/sysydz200905518
    [9] 孙丽娜, 张明峰, 吴陈君, 等. 油页岩生排烃模拟实验中不同液态烃产物特征[J]. 岩性油气藏, 2017, 29(6): 23-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201706004.htm

    SUN Li'na, ZHANG Mingfeng, WU Chenjun, et al. Features of liquid hydrocarbon in different states in oil shale during hydrous pyrolysis[J]. Lithologic Reservoirs, 2017, 29(6): 23-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201706004.htm
    [10] 高栋臣, 郭超, 姜呈馥, 等. 鄂尔多斯盆地山西组低成熟度页岩生烃热模拟[J]. 石油实验地质, 2018, 40(3): 454-460. doi: 10.11781/sysydz201803454

    GAO Dongchen, GUO Chao, JIANG Chengfu, et al. Hydrocarbon generation simulation of low-maturity shale in Shanxi Formation, Ordos Basin[J]. Petroleum Geology & Experiment, 2018, 40(3): 454-460. doi: 10.11781/sysydz201803454
    [11] 杨娟, 王作栋, 薄海波, 等. 下马岭组油页岩热模拟实验抽提物中三芴系列化合物演化特征[J]. 天然气地球科学, 2019, 30(7): 1063-1071. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201907015.htm

    YANG Juan, WANG Zuodong, BO Haibo, et al. Evolution characte-ristics of trifluorene compounds in the extracts of oil shale of Xiamaling Formation by thermal simulation test[J]. Natural Gas Geoscience, 2019, 30(7): 1063-1071. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201907015.htm
    [12] 陈菊林, 张敏. 原油热模拟实验中重排藿烷类变化特征及其意义[J]. 现代地质, 2016, 30(4): 871-879. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201604016.htm

    CHEN Julin, ZHANG Min. Rearranged hopanes compositions in pyro-lysisexperiment of crude oil and geochemical significance[J]. Geoscience, 2016, 30(4): 871-879. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201604016.htm
    [13] XIE Xiaomin, WANG Ye, LIN Jingwen, et al. Geochemical characteristics of expelled and residual oil from artificial thermal maturation of an Early Permian Tasmanite shale, Australia[J]. Energies, 2021, 14(21): 7218. doi: 10.3390/en14217218
    [14] 林静文, 谢小敏, 文志刚, 等. 塔斯马尼亚油页岩人工模拟排出油与滞留油地球化学对比Ⅰ: 族组分及同位素组成[J]. 石油实验地质, 2022, 44(1): 1-11. doi: 10.11781/sysydz202201150

    LIN Jingwen, XIE Xiaomin, WEN Zhigang, et al. A comparative study on the geochemical characteristics of expelled and retained oil from artificially maturation of Australian 'Tasmanian oil shale Ⅰ: fraction and isotopic compositions[J]. Petroleum Geology & Experiment, 2022, 44(1): 1-11. doi: 10.11781/sysydz202201150
    [15] CONNAN J, CASSOU A M. Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels[J]. Geochimica et Cosmochimica Acta, 1980, 44(1): 1-23.
    [16] 刘飞, 朱钢添, 何生, 等. 渤海湾盆地惠民凹陷临南洼陷沙河街组原油地球化学特征及油源对比[J]. 石油实验地质, 2019, 41(6): 855-864. doi: 10.11781/sysydz201906855

    LIU Fei, ZHU Gangtian, HE Sheng, et al. Geochemical characteristics of crude oil and oil-source correlation of Shahejie Formation in Linnan Sub-Sag, Huimin Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2019, 41(6): 855-864. doi: 10.11781/sysydz201906855
    [17] EL DIASTY W S, EL BEIALY S Y, ANWARI T A, et al. Organic geochemistry of the Silurian Tanezzuft Formation and crude oils, NC115 Concession, Murzuq Basin, southwest Libya[J]. Marine and Petroleum Geology, 2017, 86: 367-385.
    [18] BRITO M, RODRIGUES R, BAPTISTA R, et al. Geochemical characterization of oils and their correlation with Jurassic source rocks from the Lusitanian Basin (Portugal)[J]. Marine and Petroleum Geology, 2017, 85: 151-176.
    [19] HAVEN H L T, RULLKÖTTER J, DE LEEUW J W, et al. Pristane/phytane ratio as environmental indicator[J]. Nature, 1988, 333(6174): 604.
    [20] LARGE D J, GIZE A P. Pristane/phytane ratios in the minera-lizedKupferschiefer of the Fore-Sudetic Monocline, southwest Poland[J]. Ore Geology Reviews, 1996, 11(1/3): 89-103.
    [21] POWELL T G, MCKIRDY D M. Relationship between ratio of pristane to phytane, crude oil composition and geological environment in Australia[J]. Nature Physical Science, 1973, 243(124): 37-39.
    [22] DIDYK B M, SIMONEIT B R T, BRASSELL S C, et al. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J]. Nature, 1978, 272(5650): 216-222.
    [23] 王培荣, 朱俊章, 方孝林, 等. 一种新的原油轻烃分类法: 塔里木盆地原油分类及其地化特征[J]. 石油学报, 1998, 19(1): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB801.004.htm

    WANG Peirong, ZHU Junzhang, FANG Xiaolin, et al. A new classification of crude oils on light hydrocarbons: the classification and geochemical feature of crude oils from Tarim Basin[J]. Acta Petrolei Sinica, 1998, 19(1): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB801.004.htm
    [24] REVILL A T, VOLKMAN J K, O'LEARY T, et al. Hydrocarbon biomarkers, thermal maturity, and depositional setting of Tasmanite oil shales from Tasmania, Australia[J]. Geochimica et Cosmochimica Acta, 1994, 58(18): 3803-3822.
    [25] 王勇, 陈祥, 林社卿, 等. 准噶尔盆地西缘春光探区原油地球化学特征及油源分析[J]. 西安石油大学学报(自然科学版), 2016, 31(1): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201601006.htm

    WANG Yong, CHEN Xiang, LIN Sheqing, et al. Geochemical characteristics and source analysis of crude oil in Chunguang exploration area, the western margin of Junggar Basin[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2016, 31(1): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201601006.htm
    [26] 吴桐, 李永飞, 张涛, 等. 辽西地区北票组烃源岩生物标志化合物特征的差异性[J]. 地质与资源, 2018, 27(4): 371-376. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201804008.htm

    WU Tong, LI Yongfei, ZHANG Tao, et al. Characteristic differences of biomarker in source rocks from Beipiao Formation in western Liaoning Province[J]. Geology and Resources, 2018, 27(4): 371-376. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201804008.htm
    [27] PETERS K E, WALTERS C C, MOLDOWAN J M. The biomarker guide volume 2: biomarkers and isotopes in the petroleum exploration and earth history[M]. 2nd ed. Cambridge: Cambridge University Press, 2005: 490-502.
    [28] HUANG Difan, LI Jinchao, ZHANG Dajiang. Maturation sequence of continental crude oils in hydrocarbon basins in China and its significance[J]. Organic Geochemistry, 1990, 16(1/3): 521-529.
    [29] 陈建平, 黄第藩, 霍永录, 等. 酒东盆地营尔凹陷油气生成和运移聚集[J]. 石油勘探与开发, 1995, 22(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK506.000.htm

    CHEN Jianping, HUANG Difan, HUO Yonglu, et al. Petroleum generation, migration and accumulation in Yinger Depression, the eastern Jiuquan Basin[J]. Petroleum Exploration and Development, 1995, 22(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK506.000.htm
    [30] 张宝收, 李美俊, 赵青, 等. 原油中C26-C28三芳甾烷相对含量计算方法及其应用[J]. 石油实验地质, 2016, 38(5): 692-697. doi: 10.11781/sysydz201605692

    ZHANG Baoshou, LI Meijun, ZHAO Qing, et al. Determining the relative abundance of C26-C28 triaromatic steroids in crude oils and its application in petroleum geochemistry[J]. Petroleum Geology & Experiment, 2016, 38(5): 692-697. doi: 10.11781/sysydz201605692
    [31] 田德瑞, 吴奎, 张如才, 等. 渤海湾盆地辽西凸起北段锦州20油田原油地球化学特征及油源对比[J]. 石油实验地质, 2018, 40(3): 410-417. doi: 10.11781/sysydz201803410

    TIAN Derui, WU Kui, ZHANG Rucai, et al. Geochemical features and oil-source correlation of crude oils from JZ20 oil field on the northern margin of Liaoxi Uplift, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2018, 40(3): 410-417. doi: 10.11781/sysydz201803410
    [32] 张迈, 刘成林, 田继先, 等. 柴达木盆地西部地区原油地球化学特征及油源对比[J]. 天然气地球科学, 2020, 31(1): 61-72. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202001006.htm

    ZHANG Mai, LIU Chenglin, TIAN Jixian, et al. Characteristics of crude oil geochemical characteristics and oil source comparison in the western part of Qaidam Basin[J]. Natural Gas Geoscience, 2020, 31(1): 61-72. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202001006.htm
    [33] 常振恒, 陈中红, 张玉体, 等. 渤海湾盆地东濮凹陷原油地球化学特征研究[J]. 石油实验地质, 2007, 29(2): 178-182. doi: 10.11781/sysydz200702178

    CHANG Zhenheng, CHEN Zhonghong, ZHANG Yuti, et al. An investigation on the geochemical characteristics of crude oil from Wenliu area in the Dongpu Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2007, 29(2): 178-182. doi: 10.11781/sysydz200702178
    [34] 王章章, 李奇缘, 廖文春, 等. 生物标志物在探讨烃源岩及原油成熟度研究中的应用[J]. 地下水, 2016, 38(2): 213-215. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201602081.htm

    WANG Zhangzhang, LI Qiyuan, LIAO Wenchun, et al. Application of biomarkers in the study of source rock and crude oil maturity[J]. Ground Water, 2016, 38(2): 213-215. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201602081.htm
    [35] 李梦茹, 唐友军, 刘岩, 等. 江陵凹陷不同地区原油地球化学特征及油源对比[J]. 天然气地球科学, 2018, 29(9): 1240-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201809003.htm

    LI Mengru, TANG Youjun, LIU Yan, et al. Geochemical characteristics and oil-source correlation in crude oils from different regions of Jiangling Depression[J]. Natural Gas Geoscience, 2018, 29(9): 1240-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201809003.htm
    [36] RULLKÖTTER J, MARZI R. Natural and artificial maturation of biological markers in a Toarcian shale from northern Germany[J]. Organic Geochemistry, 1988, 13(4/6): 639-645.
    [37] 倪春华, 包建平, 梁世友. 渤海湾盆地渤中凹陷原油成熟度的多参数综合评价[J]. 石油实验地质, 2009, 31(4): 399-402. doi: 10.11781/sysydz200904399

    NI Chunhua, BAO Jianping, LIANG Shiyou. Overall evaluation by multi-parameters on maturity of crude oil from the Bozhong Sag, the Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2009, 31(4): 399-402. doi: 10.11781/sysydz200904399
    [38] 周勇水, 彭君, 李红磊, 等. 成熟度对甾萜类化合物组成特征的影响: 以银额盆地查干凹陷为例[J]. 东北石油大学学报, 2020, 44(6): 103-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY202006011.htm

    ZHOU Yongshui, PENG Jun, LI Honglei, et al. Effects of maturity on the compositional characteristics of steranes and tepanes: a case study of Chagan Sag in Yin'gen-Eji'naqi Basin[J]. Journal of Northeast Petroleum University, 2020, 44(6): 103-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY202006011.htm
    [39] 卢双舫, 张敏. 油气地球化学[M]. 北京: 石油工业出版社, 2008: 171-225.

    LU Shuangfang, ZHANG Min. Petroleum geochemistry[M]. Beijing: Petroleum Industry Press, 2008: 171-225.
    [40] 骆垠山, 张哨楠, 罗小明, 等. 鄂尔多斯盆地富县地区延长组原油生物标志物特征及油源对比[J]. 科技导报, 2016, 34(2): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201602029.htm

    LUO Yinshan, ZHANG Shaonan, LUO Xiaoming, et al. Biomarker characteristics and oil-source correlation of the Yanchang crude oil in Fuxian area, Ordos Basin[J]. Science & Technology Review, 2016, 34(2): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201602029.htm
    [41] 刘玉华, 文志刚, 宋换新, 等. 鄂尔多斯盆地演武高地镇28井区长3油层组原油地球化学特征及其意义[J]. 天然气地球科学, 2008, 19(5): 718-721. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200805027.htm

    LIU Yuhua, WEN Zhigang, SONG Huanxin, et al. Geochemical characteristics and their significance of crude oils from Chang 3 oil layer group of Zhen 28 well field, Yanwu Highland[J]. Natural Gas Geoscience, 2008, 19(5): 718-721. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200805027.htm
    [42] 段毅, 彭德华, 张晓宝, 等. 柴达木盆地原油碳同位素组成的主控因素与成因类型[J]. 沉积学报, 2003, 21(2): 355-359. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200302026.htm

    DUAN Yi, PENG Dehua, ZHANG Xiaobao, et al. Main controlling factors and genetic types of carbon isotopic compositions for crude oils from the Qaidam Basin, China[J]. Acta Sedimentologica Sinica, 2003, 21(2): 355-359. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200302026.htm
    [43] 卢政环, 甘华军, 时阳, 等. 福山凹陷西部地区原油地化特征与油源对比[J]. 地球科学, 2016, 41(11): 1909-1920. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201611007.htm

    LU Zhenghuan, GAN Huajun, SHI Yang, et al. Geochemical characteristics of crude oil and oil-source correlation in the western Fushan Depression[J]. Earth Science, 2016, 41(11): 1909-1920. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201611007.htm
    [44] 孙涛, 段毅. 煤系有机质生成烃类中甾烷系列化合物地球化学特征: 以高温封闭体系下热模拟实验为例[J]. 天然气地球科学, 2011, 22(6): 1082-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201106022.htm

    SUN Tao, DUAN Yi. Geochemical characteristics of steranes of coal generated hydrocarbons: a case of high temperature and fined simulated experiment[J]. Natural Gas Geoscience, 2011, 22(6): 1082-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201106022.htm
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  470
  • HTML全文浏览量:  130
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2022-02-09
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回