Classification and evaluation of undeveloped reserves in low-permeability reservoirs based on development technologies
-
摘要: 低渗透油藏是未来石油勘探开发的主要对象,保有未动用储量经过多轮次筛选后,剩余储量品位差,因此开发技术的适用条件是油藏能否动用的关键因素。该文以中国石化低渗透油藏为例,研究了“十二五”以来不同渗透率级别的低渗透油藏探明未开发储量的开发技术现状及动用条件,分析了保有未动用评价储量的分类,结合现有难动用储量类型和技术发展趋势,进一步厘清了低渗透油藏未来技术需求和攻关方向。Abstract: Reservoir with low-permeability is the future object of oil exploration and development. After multiple rounds of screening, the remaining reserves have poor grade. Therefore, the applicable conditions of development technology are the key factors for whether the reservoir can be produced. Taking SINOPEC low-permeability reservoirs as an example, it is discussed in this paper for the status of development technology and production conditions of proved undeveloped reserves in low-permeability reservoirs with different permeability levels since the 12th Five-Year Plan. Moreover, the classification of development potential of undeveloped reserves was carried out. Combined with the existing types of hard-to-develop reserves and technological development trends, the future technical requirements and research directions of low-permeability reservoirs were further clarified.
-
表 1 “十二五”以来中国石化低渗透油藏开发技术应用情况
Table 1. Application of development technology for low-permeability reservoirs by SINOPEC ever since 12th Five-Year Plan
序号 开发技术 储量/104 t 占比/% 1 常规/超前注水 889 8 2 仿水平井注水开发 2 505 24 3 注二氧化碳开发 292 3 4 常规压裂 1 811 17 5 直井多级分层大型压裂 713 7 6 高导流压裂技术 210 2 7 水平井分段压裂 4 092 39 合计 10 512 100 表 2 低渗透油藏开发技术现状及动用条件
Table 2. Current situation and production conditions of development technology for low-permeability reservoirs
岩性 渗透率分级/
10-3 μm2动用储量
占比/%主要配套技术 深度范围/
m油层厚度
最小值/m储量丰度最小值/
104 t/km2低渗砂岩 30~50 4.6 常规注水开发 1 850~3 200 10~30 15.1 小规模压裂/仿水平井开发/CO2驱 2 130~3 650 3.2 21 3~10 30.8 仿水平井注水开发/水平井分段压裂 2 050~3 700 3.5 23 0.2~3 39.0 长水平段多级压裂/直斜井多级大型压裂 2 070~3 900 7.1 38 低渗砂砾岩 3~10 6.0 常规压裂小井距注水开发 3 500~4 010 35 75 1.6~3 4.4 水平井立体开发技术/高导流通道压裂 3 400~4 300 75 178 表 3 低渗透油藏评价储量分类
Table 3. Classification of evaluated reserves in low-permeability reservoirs
评价储量分类 地质储量/108 t 储量比例/% 落实储量 开发技术配套,效益待评价 0.36 7.2 开发技术不配套,攻关方向明确 2.06 41.0 开发技术不配套,攻关方向不明确 0.63 12.6 小计 3.05 60.8 待落实储量 构造/储层/油水关系不清 1.97 39.2 合计 5.02 100.0 表 4 低渗透砂岩油藏压裂技术攻关类型分布
Table 4. Types of fracturing techniques for low-permeability sandstone reservoirs
序号 压裂技术类型 储量/104 t 占比/% 1 高导流通道压裂 436 32.3 2 水平井“压+注+采”一体化 502 37.2 3 薄差层压裂增产 230 17.1 4 长水平段水平井多段压裂 84 6.2 5 直井全支撑压裂 96 7.1 总计 1 348 100.0 -
[1] 赵庆飞, 凡哲元, 郑祥克, 等. 中国石化新区不同类型油藏开发指标快速评价模型的构建[J]. 油气地质与采收率, 2019, 26(4): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201904012.htmZHAO Qingfei, FAN Zheyuan, ZHENG Xiangke, et al. Rapid development indexes evaluation models on different reservoirs of new development blocks, SINOPEC oilfields[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(4): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201904012.htm [2] 计秉玉. 国内外油田提高采收率技术进展与展望[J]. 石油与天然气地质, 2012, 33(1): 111-117. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201201015.htmJI Bingyu. Progress and prospects of enhanced oil recovery techno-logies at home and abroad[J]. Oil & Gas Geology, 2012, 33(1): 111-117. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201201015.htm [3] 李荣强, 吕爱民, 王建忠, 等. 低渗透油藏仿水平井注采井网产能[J]. 石油与天然气地质, 2016, 37(3): 439-443. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201603019.htmLI Rongqiang, LYU Aimin, WANG Jianzhong, et al. Productivity of the imitation horizontal well pattern in low permeability reservoirs[J]. Oil & Gas Geology, 2016, 37(3): 439-443. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201603019.htm [4] 周林波. 高导流自支撑酸化压裂室内实验研究[J]. 特种油气藏, 2017, 24(4): 152-155. doi: 10.3969/j.issn.1006-6535.2017.04.029ZHOU Linbo. Laboratory experimental research on high conductivity self-supporting acid fracturing[J]. Special Oil & Gas Reservoirs, 2017, 24(4): 152-155. doi: 10.3969/j.issn.1006-6535.2017.04.029 [5] 卫秀芬, 唐洁. 水平井分段压裂工艺技术现状及发展方向[J]. 大庆石油地质与开发, 2014, 33(6): 104-111. doi: 10.3969/J.ISSN.1000-3754.2014.06.020WEI Xiufen, TANG Jie. Technical current status and development direction of horizontal-well staged fracturing technology[J]. Petroleum Geology & Oilfield Development in Daqing, 2014, 33(6): 104-111. doi: 10.3969/J.ISSN.1000-3754.2014.06.020 [6] 周立娟, 何学文, 王少飞, 等. 红河油田长8油藏压裂水平井生产规律研究[J]. 内蒙古石油化工, 2013, 39(13): 131-133. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201313052.htmZHOU Lijuan, HE Xuewen, WANG Shaofei, et al. Production law evaluation of fractured horizontal wells of Chang 8 section in Honghe oil reservoir[J]. Inner Mongolia Petrochemical Industry, 2013, 39(13): 131-133. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201313052.htm [7] 张全胜, 李明, 张子麟, 等. 胜利油田致密油储层体积压裂技术及应用[J]. 中国石油勘探, 2019, 24(2): 233-240. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201902012.htmZHANG Quansheng, LI Ming, ZHANG Zilin, et al. Application of volume fracturing technology in tight oil reservoirs of Shengli oilfield[J]. China Petroleum Exploration, 2019, 24(2): 233-240. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201902012.htm [8] 严侠, 黄朝琴, 辛艳萍, 等. 高速通道压裂裂缝的高导流能力分析及其影响因素研究[J]. 物理学报, 2015, 64(13): 134703. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201513034.htmYAN Xia, HUANG Zhaoqin, XIN Yanping, et al. Theoretical analysis of high flow conductivity of a fracture induced in HiWay frac-turing[J]. Acta Physica Sinica, 2015, 64(13): 134703. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201513034.htm [9] 何应付, 赵淑霞, 计秉玉, 等. 砂岩油藏CO2驱提高采收率油藏筛选与潜力评价[J]. 油气地质与采收率, 2020, 27(1): 140-145. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202001022.htmHE Yingfu, ZHAO Shuxia, JI Bingyu, et al. Screening method and potential evaluation for EOR by CO2 flooding in sandstone reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 140-145. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202001022.htm [10] 刘小波. CO2混相驱技术在特低渗透滩坝砂油藏的开发实践及效果评价[J]. 油气地质与采收率, 2020, 27(3): 113-119. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202003016.htmLIU Xiaobo. Application and evaluation of CO2 miscible flooding in extra-low permeability beach-bar sand reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(3): 113-119. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202003016.htm [11] 计秉玉, 王友启, 聂俊, 等. 中国石化提高采收率技术研究进展与应用[J]. 石油与天然气地质, 2016, 37(4): 572-576. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201604016.htmJI Bingyu, WANG Youqi, NIE Jun, et al. Research progress and application of EOR techniques in SINOPEC[J]. Oil & Gas Geology, 2016, 37(4): 572-576. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201604016.htm [12] 孙龙德, 邹才能, 贾爱林, 等. 中国致密油气发展特征与方向[J]. 石油勘探与开发, 2019, 46(6): 1015-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906002.htmSUN Longde, ZOU Caineng, JIA Ailin, et al. Development characte-ristics and orientation of tight oil and gas in China[J]. Petroleum Exploration and Development, 2019, 46(6): 1015-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906002.htm [13] 秦积舜, 韩海水, 刘晓蕾. 美国CO2驱油技术应用及启示[J]. 石油勘探与开发, 2015, 42(2): 209-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201502011.htmQIN Jishun, HAN Haishui, LIU Xiaolei. Application and enlightenment of carbon dioxide flooding in the United States of America[J]. Petroleum Exploration and Development, 2015, 42(2): 209-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201502011.htm [14] 李宛珊, 王健, 任振宇, 等. 低渗透油藏二氧化碳气溶性泡沫控制气窜实验研究[J]. 特种油气藏, 2019, 26(5): 136-141. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201905023.htmLI Wanshan, WANG Jian, REN Zhenyu, et al. Gas-channeling control experiment with carbon dioxide gas-soluble foam in low-permeability oil reservoir[J]. Special Oil and Gas Reservoirs, 2019, 26(5): 136-141. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201905023.htm [15] 李金志. 胜利油田低渗透油藏CO2混相驱合理注采井距研究[J]. 油气地质与采收率, 2020, 27(3): 64-69. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202003009.htmLI Jinzhi. Reasonable well spacing for CO2 miscible flooding in low-permeability reservoirs of Shengli Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(3): 64-69. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202003009.htm [16] 秦积舜, 李永亮, 吴德斌, 等. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 2020, 27(1): 20-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202001004.htmQIN Jishun, LI Yongliang, WU Debin, et al. CCUS global progress and China's policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 20-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202001004.htm [17] 牛小兵, 冯胜斌, 尤源, 等. 致密储层体积压裂作用范围及裂缝分布模式: 基于压裂后实际取心资料[J]. 石油与天然气地质, 2019, 40(3): 669-677. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903023.htmNIU Xiaobing, FENG Shengbin, YOU Yuan, et al. Fracture extension and distribution pattern of volume fracturing in tight reservoir: an analysis based on actual coring data after fracturing[J]. Oil & Gas Geology, 2019, 40(3): 669-677. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903023.htm [18] 朱如凯, 邹才能, 吴松涛, 等. 中国陆相致密油形成机理与富集规律[J]. 石油与天然气地质, 2019, 40(6): 1168-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906002.htmZHU Rukai, ZOU Caineng, WU Songtao, et al. Mechanism for generation and accumulation of continental tight oil in China[J]. Oil & Gas Geology, 2019, 40(6): 1168-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906002.htm [19] 李绍杰. 低渗透滩坝砂油藏CO2近混相驱生产特征及气窜规律[J]. 大庆石油地质与开发, 2016, 35(2): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201602021.htmLI Shaojie. Performances and gas breakthrough law for CO2 near-miscible flooding in the low-permeability bar and shoal oil reser-voirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2016, 35(2): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201602021.htm [20] 苏建政, 李凤霞, 周彤. 页岩储层超临界二氧化碳压裂裂缝形态研究[J]. 石油与天然气地质, 2019, 40(3): 616-625. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903017.htmSU Jianzheng, LI Fengxia, ZHOU Tong. Hydraulic fracture propagation behaviors and geometry under supercritical CO2 fracturing in shale reservoirs[J]. Oil & Gas Geology, 2019, 40(3): 616-625. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903017.htm [21] 吴顺林, 李宪文, 张矿生, 等. 一种实现裂缝高导流能力的脉冲加砂压裂新方法[J]. 断块油气田, 2014, 21(1): 110-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201401029.htmWU Shunlin, LI Xianwen, ZHANG Kuangsheng, et al. A new method of pulse sand fracturing to achieve high conductivity of fracture[J]. Fault-Block Oil & Gas Field, 2014, 21(1): 110-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201401029.htm [22] 慕立俊, 赵振峰, 李宪文, 等. 鄂尔多斯盆地页岩油水平井细切割体积压裂技术[J]. 石油与天然气地质, 2019, 40(3): 626-635. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903018.htmMU Lijun, ZHAO Zhenfeng, LI Xianwen, et al. Fracturing technology of stimulated reservoir volume with subdivision cutting for shale oil horizontal wells in Ordos Basin[J]. Oil & Gas Geology, 2019, 40(3): 626-635. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903018.htm [23] 雷群, 管保山, 才博, 等. 储集层改造技术进展及发展方向[J]. 石油勘探与开发, 2019, 46(3): 580-587. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101020.htmLEI Qun, GUAN Baoshan, CAI Bo, et al. Technological progress and prospects of reservoir stimulation[J]. Petroleum Exploration and Development, 2019, 46(3): 580-587. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101020.htm [24] 胥云, 雷群, 陈铭, 等. 体积改造技术理论研究进展与发展方向[J]. 石油勘探与开发, 2018, 45(5): 874-887. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805016.htmXU Yun, LEI Qun, CHEN Ming, et al. Progress and development of volume stimulation techniques[J]. Petroleum Exploration and Development, 2018, 45(5): 874-887. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805016.htm
计量
- 文章访问数: 425
- HTML全文浏览量: 125
- PDF下载量: 42
- 被引次数: 0