[1] |
王冠民, 任拥军, 钟建华, 等. 济阳坳陷古近系黑色页岩中纹层状方解石脉的成因探讨[J]. 地质学报, 2005, 79(6): 834-838. doi: 10.3321/j.issn:0001-5717.2005.06.012WANG Guanmin, REN Yongjun, ZHONG Jianhua, et al. Genetic analysis on lamellar calcite veins in Paleogene black shale of the Jiyang Depression[J]. Acta Geologica Sinica, 2005, 79(6): 834-838. doi: 10.3321/j.issn:0001-5717.2005.06.012
|
[2] |
ZHANG Jianguo, JIANG Zaixing, JIANG Xiaolong, et al. Oil generation induces sparry calcite formation in lacustrine mudrock, Eocene of East China[J]. Marine and Petroleum Geo-logy, 2016, 71: 344-359. doi: 10.1016/j.marpetgeo.2016.01.007
|
[3] |
TABER S. The origin of veinlets in the Silurian and Devonian strata of central New York[J]. The Journal of Geology, 1918, 26(1): 56-73. doi: 10.1086/622561
|
[4] |
BONS P D, MONTENARI M. The formation of antitaxial calcite veins with well-developed fibres, Oppaminda Creek, South Australia[J]. Journal of Structural Geology, 2005, 27(2): 231-248. doi: 10.1016/j.jsg.2004.08.009
|
[5] |
PUTNIS A, PRIETO M, FERNANDEZ-DIAZ L. Fluid supersaturation and crystallization in porous media[J]. Geological Magazine, 1995, 132(1): 1-13. doi: 10.1017/S0016756800011389
|
[6] |
COBBOLD P R, ZANELLA A, RODRIGUES N, et al. Bedding-parallel fibrous veins (beef and cone-in-cone): worldwide occurrence and possible significance in terms of fluid overpressure, hydrocarbon generation and mineralization[J]. Marine and Petroleum Geology, 2013, 43: 1-20. doi: 10.1016/j.marpetgeo.2013.01.010
|
[7] |
BONS P D, JESSELL M W. Experimental simulation of the formation of fibrous veins by localised dissolution-precipitation creep[J]. Mineralogical Magazine, 1997, 61(404): 53-63. doi: 10.1180/minmag.1997.061.404.06
|
[8] |
MAHER H D, OGATA K, BRAATHEN A. Cone-in-cone and beef mineralization associated with Triassic growth basin faulting and shallow shale diagenesis, EdgeØya, Svalbard[J]. Geological Magazine, 2017, 154(2): 201-216. doi: 10.1017/S0016756815000886
|
[9] |
MENG Qingfeng, HOOKER J, CARTWRIGHT J. Early overpressuring in organic-rich shales during burial: evidence from fibrous calcite veins in the Lower Jurassic Shales-with-Beef Member in the Wessex Basin, UK[J]. Journal of the Geological Society, 2017, 174(5): 869-882. doi: 10.1144/jgs2016-146
|
[10] |
UKAR E, LOPEZ R G, GALE J F W, et al. New type of kinematic indicator in bed-parallel veins, Late Jurassic-Early Cretaceous Vaca Muerta Formation, Argentina: E-W shortening during Late Cretaceous vein opening[J]. Journal of Structural Geology, 2017, 104: 31-47. doi: 10.1016/j.jsg.2017.09.014
|
[11] |
WANG Miao, CHEN Yong, BAIN W M, et al. Direct evidence for fluid overpressure during hydrocarbon generation and expulsion from organic-rich shales[J]. Geology, 2020, 48(4): 374-378. doi: 10.1130/G46650.1
|
[12] |
MA Cunfei, DONG Chunmei, LUAN Guoqiang, et al. Types, characteristics and effects of natural fluid pressure fractures in shale: a case study of the Paleogene strata in Eastern China[J]. Petroleum Exploration and Development, 2016, 43(4): 634-643. doi: 10.1016/S1876-3804(16)30074-X
|
[13] |
LUAN Guoqiang, DONG Chunmei, AZMY K, et al. Origin of bedding-parallel fibrous calcite veins in lacustrine black shale: a case study from Dongying Depression, Bohai Bay Basin[J]. Marine and Petroleum Geology, 2019, 102: 873-885. doi: 10.1016/j.marpetgeo.2019.01.010
|
[14] |
SHOVKUN I, ESPINOZA D N. Geomechanical implications of dissolution of mineralized natural fractures in shale formations[J]. Journal of Petroleum Science and Engineering, 2018, 160: 555-564. doi: 10.1016/j.petrol.2017.10.043
|
[15] |
MILLIKEN K L, DAY-STIRRAT R J. Cementation in mudrocks: brief review with examples from cratonic basin mudrocks[M]//CHATELLIER J Y, JARVIE D M. Critical assessment of shale resource plays. Tulsa: American Association of Petroleum Geo-logists, 2013: 133-160.
|
[16] |
LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. doi: 10.1306/08171111061
|
[17] |
GALE J F W, REED R M, HOLDER J. Natural fractures in the Barnett shale and their importance for hydraulic fracture treatments[J]. AAPG Bulletin, 2007, 91(4): 603-622. doi: 10.1306/11010606061
|
[18] |
ZHANG Bo, YIN Congyuan, GU Zhidong, et al. New indicators from bedding-parallel beef veins for the fault valve mechanism[J]. Science China Earth Sciences, 2015, 58(8): 1320-1336. doi: 10.1007/s11430-015-5086-6
|
[19] |
MING Xiaoran, LIU Li, YU Miao, et al. Bleached mudstone, iron concretions, and calcite veins: a natural analogue for the effects of reducing CO2-bearing fluids on migration and mineralization of iron, sealing properties, and composition of mudstone cap rocks[J]. Geofluids, 2016, 16(5): 1017-1042. doi: 10.1111/gfl.12203
|
[20] |
VILLERT S, MAURICE C, WYON C, et al. Accuracy assessment of elastic strain measurement by EBSD[J]. Journal of microscopy, 2009, 233(2): 290-301. doi: 10.1111/j.1365-2818.2009.03120.x
|
[21] |
WILKINSON A J, MEADEN G, DINGLEY D J, et al. Mapping strains at the nanoscale using electron back scatter diffraction[J]. Superlattices and Microstructures, 2009, 45(4/5): 285-294.
|
[22] |
MAURICE C, QUEY R, FORTUNIER R, et al. High angular resolution EBSD and its materials applications[M]//MOLODOV D A. Microstructural design of advanced engineering materials. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2013: 339-365.
|
[23] |
黄亚敏, 潘春旭. 基于电子背散射衍射(EBSD)技术的材料微区应力应变状态研究综述[J]. 电子显微学报, 2010, 29(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201001002.htmHUANG Yamin, PAN Chunxu. Micro-stress-strain analysis in materials based upon EBSD technique: a review[J]. Journal of Chinese Electron Microscopy Society, 2010, 29(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201001002.htm
|
[24] |
杨平. 电子背散射衍射技术、几何晶体学与材料科学[J]. 电子显微学报, 2008, 27(6): 425-431. doi: 10.3969/j.issn.1000-6281.2008.06.001YANG Ping. EBSD technique, geometric crystallography and materials science[J]. Journal of Chinese Electron Microscopy Society, 2008, 27(6): 425-431. doi: 10.3969/j.issn.1000-6281.2008.06.001
|
[25] |
靳丽, MISHARA R K, KUBIC R. 材料变形过程中的原位电子背散射衍射(in-situ EBSD)分析[J]. 电子显微学报, 2008, 27(6): 439-442. https://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ202202007.htmJIN Li, MISHARA R K, KUBIC R. In-situ EBSD analysis on the microstructures during deformation[J]. Journal of Chinese Electron Microscopy Society, 2008, 27(6): 439-442. https://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ202202007.htm
|
[26] |
NOWELL M M, WRIGHT S L. Phase differentiation via combined EBSD and XEDS[J]. Journal of Microscopy, 2005, 213(3): 296-305.
|
[27] |
ASPIROZ M D, LLOYD G E, FERNÁNDEZ C. Development of lattice preferred orientation in clinoamphiboles deformed under low-pressure metamorphic conditions. A SEM/EBSD study of metabasites from the Aracena metamorphic belt (SW Spain)[J]. Journal of Structural Geology, 2007, 29(4): 629-645. doi: 10.1016/j.jsg.2006.10.010
|
[28] |
ZAEFFERER S, WRIGHT S L. 3D characterization of crystallographic orientation in polycrystals via EBSD[J]. Chinese Journal of Stereology and Image Analysis, 2007, 12(4): 233-238.
|
[29] |
刘俊来, 曹淑云, 邹运鑫, 等. 岩石电子背散射衍射(EBSD)组构分析及应用[J]. 地质通报, 2008, 27(10): 1638-1645. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200810006.htmLIU Junlai, CAO Shuyun, ZOU Yunxin, et al. EBSD analysis of rock fabrics and its application[J]. Geological Bulletin of China, 2008, 27(10): 1638-1645. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200810006.htm
|
[30] |
HEIDELBACH F, KUNZE K, WENK H R. Texture analysis of a recrystallized quartzite using electron diffraction in the scanning electron microscope[J]. Journal of Structural Geology, 2000, 22(1): 91-104. doi: 10.1016/S0191-8141(99)00125-X
|
[31] |
LLOYD G E. Grain boundary contact effects during faulting of quartzite: an SEM/EBSD analysis[J]. Journal of Structural Geology, 2000, 22(11/12): 1675-1693.
|
[32] |
MAINPRICE D, BASCOU J, CORDIER P, et al. Crystal preferred orientations of garnet: comparison between numerical simulations and electron back-scattered diffraction (EBSD) measurements in naturally deformed eclogites[J]. Journal of Structural Geology, 2004, 26(11): 2089-2102. doi: 10.1016/j.jsg.2004.04.008
|
[33] |
TOY V G, PRIOR D J, NORRIS R J. Quartz fabrics in the Alpine Fault mylonites: influence of pre-existing preferred orientations on fabric development during progressive uplift[J]. Journal of Structural Geology, 2008, 30(5): 602-621. doi: 10.1016/j.jsg.2008.01.001
|
[34] |
许志琴, 王勤, 梁凤华, 等. 电子背散射衍射(EBSD)技术在大陆动力学研究中的应用[J]. 岩石学报, 2009, 25(7): 1721-1736. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200907016.htmXU Zhiqin, WANG Qin, LIANG Fenghua, et al. Electron backscatter diffraction (EBSD) technique and its application to study of continental dynamics[J]. Acta Petrologica Sinica, 2009, 25(7): 1721-1736. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200907016.htm
|
[35] |
MICHAEL J, SCHISCHKA J, ALTMANN F. HKL technology EBSD application catalogue[M]. Hobro, Denmark: HKL Technology. 2003.
|
[36] |
BURKHARD M. Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: a review[J]. Journal of Structural Geology, 1993, 15(3/5): 351-368.
|
[37] |
陈世悦. 矿物岩石学[M]. 东营: 中国石油大学出版社, 2002.CHEN Shiyue. Mineralogy petrology[M]. Dongying: China University of Petroleum Press, 2002.
|
[38] |
戴俊生. 构造地质学及大地构造[M]. 北京: 石油工业出版社, 2006.DAI Junsheng. Structural geology and tectonics[M]. Beijing: Petroleum Industry Press, 2006.
|
[39] |
董大忠, 施振生, 孙莎莎, 等. 黑色页岩微裂缝发育控制因素: 以长宁双河剖面五峰组—龙马溪组为例[J]. 石油勘探与开发, 2018, 45(5): 763-774. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805003.htmDONG Dazhong, SHI Zhensheng, SUN Shasha, et al. Factors contro-lling microfractures in black shale: a case study of Ordovician Wufeng Formation Silurian Longmaxi Formation in Shuanghe profile, Changning area, Sichuan Basin, SW China[J]. PetroleumExploration and Development, 2018, 45(5): 763-774. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805003.htm
|
[40] |
梁峰, 邱峋晰, 戴赟, 等. 四川盆地下志留统龙马溪组页岩纳米孔隙发育特征及主控因素[J]. 石油实验地质, 2020, 42(3): 451-458. doi: 10.11781/sysydz202003451LIANG Feng, QIU Xunxi, DAI Yun, et al. Characteristics and main controls of nano-pores in the Lower Silurian Longmaxi shale, Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(3): 451-458. doi: 10.11781/sysydz202003451
|