Temperature-sensitivity of underground gas reservoir storage and its effect on well deliverability
-
摘要: 气藏型储气库交替注采工况下的储层温度变化是影响渗透率乃至储气库注采能力的关键因素。为探究砂岩储层渗透率的温度敏感性规律及其对气井注采能力的影响,在储气库运行的温度范围内设计了多轮次交变温度下渗透率温度敏感性实验,模拟气藏型储气库储层温度的周期性变化。实验结果表明:(1)储层渗透率随温度升高而减小,随温度降低而增大,且多轮次交变温度下渗透率表现出滞后效应,随升降温轮次增加滞后效应逐渐减弱;(2)储层渗透率温度敏感性规律不同于应力敏感,渗透率与温度呈线性相关,且单轮升降温过程中滞后效应强弱不随温度改变;(3)基于实验结果建立了考虑渗透率温度敏感性的气井产能方程,研究发现忽略储层渗透率温度敏感性将低估气井注采能力,且储层埋藏越深、气井注采气量越大时,温度敏感性对注采能力的影响越大。Abstract: The temperature change under alternating injection-production conditions of underground gas reservoir storage is a key factor for permeability and even deliverability. To explore the temperature-sensitivity of sandstone reservoir permeability and its effect on the deliverability of gas well, experimental studies at multiple rounds were carried out within the realistic temperature range of underground gas storage to simulate more accurately. Results show that: (1) Reservoir permeability negatively correlates with temperature. Permeability exhibits a hysteresis effect under cyclic alternating temperature, and the hysteresis effect gradually weakens with the variation of temperature. (2) Permeability and temperature are linearly correlated, and the hysteresis effect does not change with temperature, which is different from stress-sensitivity. (3) Based on the experimental results, a deliverability equation modified with temperature-sensitivity was established. Calculation shows that, ignoring the temperature-sensitivity of permeability will underestimate the performance of gas well, and its effect will aggravate with the increasing elevation and injection flowrate.
-
表 1 多轮次渗透率温度敏感性实验岩样基本参数
Table 1. Basic parameters of rock samples for multiple rounds of permeability temperature-sensitivity experiments
序号 岩样编号 长度/cm 直径/cm 孔隙度/% 渗透率/10-3 μm2 实验围压/MPa 1 5-2-23-4 5.06 2.49 20.25 29.95 5 2 5-21-23-1 5.11 2.51 20.72 80.03 5 3 5-21-23-2 5.09 2.49 22.10 73.35 40 4 6-5-19-10 5.17 2.50 12.86 0.21 5 5 6-5-19-13 5.03 2.51 12.37 0.32 40 表 2 不同升降温轮次渗透率随温度变化的函数关系
Table 2. Function relation between permeability and temperature in different cycles
升温轮次 函数关系式 相关系数R2 降温轮次 函数关系式 相关系数R2 第1轮 K/K0= -0.003 4T+1.072 0.997 1 第1轮 K/K0= -0.002 5T+0.991 0.958 5 第2轮 K/K0= -0.001 9T+0.977 0.966 8 第2轮 K/K0= -0.001 9T+0.969 0.964 3 第3轮 K/K0= -0.001 8T+0.961 0.970 5 第3轮 K/K0= -0.001 5T+0.929 0.979 4 表 3 不同注气量和不同深度下的井底与储层温差
Table 3. Temperature difference between bottom hole and reservoir at different flow rates and depths
日注气量/104 m3 不同深度下井底与储层温差/℃ 2 000 m 3 000 m 4 000 m 5 000 m 25 8.02 10.25 10.92 10.98 50 13.47 19.21 21.88 22.57 75 16.03 25.09 30.65 33.03 100 16.81 28.99 37.13 41.49 150 17.44 33.45 45.12 52.95 200 17.61 35.17 48.93 59.21 表 4 考虑渗透率温度敏感性的气井注采能力对比
Table 4. Comparison of gas well deliverability considering permeability temperature-sensitivity
温差/℃ 2 000 m 3 000 m 4 000 m 5 000 m 无阻流量/(104 m3·d-1) 偏差/% 无阻流量/(104 m3·d-1) 偏差/% 无阻流量/(104 m3·d-1) 偏差/% 无阻流量/(104 m3·d-1) 偏差/% 0 165.6 0 318.4 0 486.2 0 658.5 0 10 171.4 3.5 329.1 3.4 502.2 3.3 680.1 3.3 20 177.4 7.1 340.1 6.8 518.6 6.7 702.1 6.6 30 351.3 10.4 535.2 10.1 724.3 10.0 40 552.1 13.6 746.9 13.4 50 770.0 16.9 -
[1] 邹才能, 赵群, 陈建军, 等. 中国天然气发展态势及战略预判[J]. 天然气工业, 2018, 38(4): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201804002.htmZOU Caineng, ZHAO Qun, CHEN Jianjun, et al. Natural gas in China: development trend and strategic forecast[J]. Natural Gas Industry, 2018, 38(4): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201804002.htm [2] 丁国生, 李春, 王皆明, 等. 中国地下储气库现状及技术发展方向[J]. 天然气工业, 2015, 35(11): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201511026.htmDING Guosheng, LI Chun, WANG Jieming, et al. The status quo and technical development direction of underground gas storages in China[J]. Natural Gas Industry, 2015, 35(11): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201511026.htm [3] 马新华, 郑得文, 申瑞臣, 等. 中国复杂地质条件气藏型储气库建库关键技术与实践[J]. 石油勘探与开发, 2018, 45(3): 489-499. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803016.htmMA Xinhua, ZHENG Dewen, SHEN Ruichen, et al. Key technologies and practice for gas field storage facility construction of complex geological conditions in China[J]. Petroleum Exploration and Development, 2018, 45(3): 489-499. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803016.htm [4] 孙军昌, 胥洪成, 王皆明, 等. 气藏型地下储气库建库注采机理与评价关键技术[J]. 天然气工业, 2018, 38(4): 138-144. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201804023.htmSUN Junchang, XU Hongcheng, WANG Jieming, et al. Injection-production mechanisms and key evaluation technologies for underground gas storages rebuilt from gas reservoirs[J]. Natural Gas Industry, 2018, 38(4): 138-144. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201804023.htm [5] 郑得文, 胥洪成, 王皆明, 等. 气藏型储气库建库评价关键技术[J]. 石油勘探与开发, 2017, 44(5): 794-801. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201705017.htmZHENG Dewen, XU Hongcheng, WANG Jieming, et al. Key evaluation techniques in the process of gas reservoir being converted into underground gas storage[J]. Petroleum Exploration and Development, 2017, 44(5): 794-801. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201705017.htm [6] 孙春柳, 侯吉瑞, 石磊, 等. 气藏型储气库注采运行物理模拟研究与应用[J]. 天然气工业, 2016, 36(5): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201605014.htmSUN Chunliu, HOU Jirui, SHI Lei, et al. A physical simulation experimental system for injection-withdrawal operation of gas reservoir underground gas storage and its application[J]. Natural Gas Industry, 2016, 36(5): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201605014.htm [7] SOMERTON W H, GUPTA V S. Role of fluxing agents in thermal alteration of sandstones[J]. Journal of Petroleum Technology, 1965, 17(5): 585-588. [8] 卜宜顺, 杨圣奇, 黄彦华. 温度和损伤程度对砂岩渗透特性影响的试验研究[J]. 工程力学, 2021, 38(5): 122-130. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202105011.htmBU Yishun, YANG Shengqi, HUANG Yanhua. Experimental study on the influence of temperature and damage degree on the permeability of sandstone[J]. Engineering Mechanics, 2021, 38(5): 122-130. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202105011.htm [9] 左建平, 谢和平, 周宏伟, 等. 不同温度作用下砂岩热开裂的实验研究[J]. 地球物理学报, 2007, 50(4): 1150-1155. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200704023.htmZUO Jianping, XIE Heping, ZHOU Hongwei, et al. Experimental research on thermal cracking of sandstone under different temperature[J]. Chinese Journal of Geophysics, 2007, 50(4): 1150-1155. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200704023.htm [10] 郭肖, 朱争, 高涛, 等. 温度对低渗透储层应力敏感影响[J]. 大庆石油地质与开发, 2015, 34(4): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201504016.htmGUO Xiao, ZHU Zheng, GAO Tao, et al. Influences of the temperature on the stress-sensitivity in low-permeability reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2015, 34(4): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201504016.htm [11] SANYAL S K, MARSDEN S S JR, RAMEY H J JR. Effect of temperature on petrophysical properties of reservoir rocks[C]//SPE California Regional Meeting. San Francisco, California: Society of Petroleum Engineers, 1974. [12] 刘均荣, 秦积舜, 吴晓东. 温度对岩石渗透率影响的实验研究[J]. 石油大学学报(自然科学版), 2001, 25(4): 51-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200104015.htmLIU Junrong, QIN Jishun, WU Xiaodong. Experimental study on relation between temperature and rocky permeability[J]. Journal of the University of Petroleum, China, 2001, 25(4): 51-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200104015.htm [13] 曾平, 赵金洲, 李治平, 等. 温度、有效应力和含水饱和度对低渗透砂岩渗透率影响的实验研究[J]. 天然气地球科学, 2005, 16(1): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200501007.htmZENG Ping, ZHAO Jinzhou, LI Zhiping, et al. Experimental study concerning the effect of temperature, effective stress and water saturation on the permeability of tight sandstone[J]. Nature Gas Geoscience, 2005, 16(1): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200501007.htm [14] 梁冰, 高红梅, 兰永伟. 岩石渗透率与温度关系的理论分析和试验研究[J]. 岩石力学与工程学报, 2005, 24(12): 2009-2012. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200512001.htmLIANG Bing, GAO Hongmei, LAN Yongwei. Theoretical analysis and experimental study on relation between rock permeability and temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(12): 2009-2012. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200512001.htm [15] 刘向君, 高涵, 梁利喜. 温度围压对低渗透砂岩孔隙度和渗透率的影响研究[J]. 岩石力学与工程学报, 2011, 30(S2): 3771-3778. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2053.htmLIU Xiangjun, GAO Han, LIANG Lixi. Study of temperature and confining pressure effects on porosity and permeability in low permeability sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S2): 3771-3778. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2053.htm [16] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 岩心分析方法: GB/T 29172-2012[S]. 北京: 中国标准出版社, 2013.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Practices for core analysis: GB/T 29172-2012[S]. Beijing: Standards Press of China, 2013. [17] 李继强, 赵冠群, 戚志林, 等. 气藏型储气库多周期注采储集层应力敏感效应[J]. 石油勘探与开发, 2021, 48(4): 835-842. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104018.htmLI Jiqiang, ZHAO Guanqun, QI Zhilin, et al. Stress sensitivity of formation during multi-cycle gas injection and production in an underground gas storage rebuilt from gas reservoirs[J]. Petroleum Exploration and Development, 2021, 48(4): 835-842. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104018.htm [18] 苟燕, 孙军昌, 杨正明, 等. 复杂岩性储层渗透率—应力敏感性及其对气井产能的影响[J]. 岩土力学, 2014, 35(9): 2535-2542. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201409015.htmGOU Yan, SUN Junchang, YANG Zhengming, et al. Permeability-stress sensitivity of complex lithology reservoir and its effect on gas well productivity[J]. Rock and Soil Mechanics, 2014, 35(9): 2535-2542. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201409015.htm [19] 朱华银, 唐立根, 庞宇来, 等. 裂缝—孔隙型储层在交变压力条件下的渗透率变化: 以四川盆地东部沙坪场石炭系气藏为例[J]. 天然气地球科学, 2021, 32(6): 914-922. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202106014.htmZHU Huayin, TANG Ligen, PANG Yulai, et al. Permeability changes of fracture-pore type reservoir under the conditions of alternating pressure: case study of Shapingchang carbonate gas reservoir in eastern Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(6): 914-922. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202106014.htm [20] 弗杰尔E, 霍尔特R M, 霍斯拉德P, 等. 石油工程岩石力学[M]. 邓金根, 蔚宝华, 王金凤, 译. 北京: 石油工业出版社, 2012.FJAER E, HOLT R M, HORSRUD P. Petroleum related rock mechanics[M]. DENG Jingen, WEI Baohua, WANG Jinfeng, trans. Beijing: Petroleum Industry Press, 2012. [21] 李传亮. 油藏工程原理[M]. 2版. 北京: 石油工业出版社, 2011.LI Chuanliang. Fundamentals of reservoir engineering[M]. 2nd ed. Beijing: Petroleum Industry Press, 2011. [22] NI H Y, LIU J F, CHEN X, et al. Macroscopic and microscopic study on gas permeability characteristics of tight sandstone under temperature-stress coupling[R]. The 5th ISRM Young Scholars' Symposium on Rock Mechanics and International Symposium on Rock Engineering for Innovative Future, Okinawa, Japan, 2019. [23] 孙珂, 陈清华. 苏北盆地金湖凹陷阜宁组砂岩储层力学性质及影响因素[J]. 石油实验地质, 2021, 43(2): 343-353. doi: 10.11781/sysydz202102343SUN Ke, CHEN Qinghua. Mechanical properties and influencing factors of Funing Formation sandstone reservoir in Jinhu Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 343-353. doi: 10.11781/sysydz202102343 [24] 张璐, 国建英, 林潼, 等. 碳酸盐岩盖层突破压力的影响因素分析[J]. 石油实验地质, 2021, 43(3): 461-467. doi: 10.11781/sysydz202103461ZHANG Lu, GUO Jianying, LIN Tong, et al. Influencing factors for breakthrough pressure of carbonate caprocks[J]. Petroleum Geology & Experiment, 2021, 43(3): 461-467. doi: 10.11781/sysydz202103461 [25] 王泉, 陈超, 李道清, 等. 基于有效渗透率的单井增产潜力定量评价: 以新疆H储气库为例[J]. 新疆石油地质, 2020, 41(4): 450-456. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202004010.htmWANG Quan, CHEN Chao, LI Daoqing, et al. Quantitative evaluation of well yield-increasing potential based on effective permeability: a case of H gas storage in Xinjiang[J]. Xinjiang Petroleum Geology, 2020, 41(4): 450-456. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202004010.htm [26] 李士伦. 天然气工程[M]. 北京: 石油工业出版社, 2000.LI Shilun. Gas engineering[M]. Beijing: Petroleum Industry Press, 2000. [27] 于洋, 李力民, 董宗豪, 等. 相国寺储气库注采井井筒温度压力预测[J]. 石油管材与仪器, 2019, 5(2): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYQ201902008.htmYU Yang, LI Limin, DONG Zonghao, et al. Prediction for wellbore temperature and pressure in injection-production well of the Xiangguosi gas storage[J]. Petroleum Tubular Goods & Instruments, 2019, 5(2): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYQ201902008.htm