Controls of strike-slip fault activities on hydrocarbon accumulation in Tahe Oilfield, Tarim Basin: a case study of TP 39 fault zone
-
摘要: 塔里木盆地塔河油田奥陶系走滑断裂发育,控制了该区的油气成藏和分布。以塔河油田托甫39走滑断裂带为研究对象,在对其活动历史分析的基础之上,利用流体包裹体技术对断裂带油气充注期次和时间进行分析,研究了油气充注史与断裂活动之间的关系。托甫39走滑断裂带油气富集程度高,存在多期活动的特征,可划分为3个阶段,即加里东中晚期—海西期、印支期和燕山期—喜马拉雅期。流体包裹体研究结果显示,托甫39走滑断裂带碳酸盐岩储层中存在4期油充注,分别捕获了金黄色、黄色、黄绿色和蓝色荧光颜色的油包裹体;采用油包裹体伴生盐水包裹体均一温度结合储层埋藏史和热史的方法,确定4期油充注时间分别发生在距今约440,324,220,110 Ma。4期油充注时间分别与加里东期、海西期、印支期和燕山期相对应,与断裂活动时间具有较好的响应关系,说明走滑断裂带活动一定程度上制约了油气成藏时间,从而影响了整个成藏过程。Abstract: Strike-slip faults were well-developed in the Tahe Oilfield, Tarim Basin, which had an important control to the accumulation and distribution of hydrocarbon. In this study, the TP 39 strike-slip fault in the Tahe Oilfield was taken as an example, fluid inclusions were used to determine the time of hydrocarbon charge based on the analysis of strike-slip fault activity history, and the relationship between hydrocarbon charging events and fault activity history was studied. Results show that the TP 39 strike-slip fault zone is rich in oil and gas resources and has the characteristics of multi-stage activities, namely the Middle-Late Caledonian to Early Hercynian, Indosinian and Yanshanian-Himalayan, respectively. The results of fluid inclusion analysis indicated that there were four episodes of oil charge to the Ordovician reservoir of TP 39 strike-slip fault, and oil inclusions with golden-yellowish, yellow, yellow-green and blue fluorescing colors were trapped. According to the minimum homogenization temperature of aqueous inclusions co-existed with oil-bearing inclusions, combined with the burial and thermal histories of reservoirs, there were four periods of oil filling events occurred at around 440, 324, 220 and 110 Ma, corresponding to Caledonian, Hercynian, Indosinian and Yanshanian, respectively, which showed a good response relationship with the fault activity time. It was then concluded that the activities of strike-slip fault constrained the time of hydrocarbon charge, thus controlled the whole process of hydrocarbon accumulation.
-
图 2 塔里木盆地塔河油田走滑断裂地震解释剖面
剖面位置见图 1。
Figure 2. Seismic interpretation of strike-slip faults in Tahe Oilfield, Tarim Basin
图 4 塔里木盆地塔河油田托甫39走滑断裂带平面和地震剖面特征[31]
a-d.断裂带多层位相干与断裂分布;e.解释剖面;f.原始未解释剖面
Figure 4. Plane and seismic sections of TP 39 strike-slip fault in Tahe Oilfield, Tarim Basin
表 1 塔里木盆地塔河油田托甫39走滑断裂带采样清单
Table 1. Sampling list for TP 39 strike-slip fault zone in Tahe Oilfield, Tarim Basin
样品编号 井名 层位 深度/m 岩性 TH1 T740 O2yj 6 172.8 灰黄色砂屑灰岩 TH2 TP193 O1-2y 7 384.6 灰色泥晶灰岩 TH3 TH12374 O2yj 6 284.6 浅灰色泥晶灰岩 TH4 TP37 O2yj 6 906.0 浅黄灰色微晶灰岩 TH5 TP39 O2yj 7 066.5 浅黄灰色亮晶砂屑灰岩 TH6 TS3-3 O1-2y 6 103.0 灰黄色泥晶灰岩 -
[1] SYLVESTER A G. Strike-slip faults[J]. GSA Bulletin, 1988, 100(11): 1666-1703. doi: 10.1130/0016-7606(1988)100<1666:SSF>2.3.CO;2 [2] CHOI J H, EDWARDS P, KO K, et al. Definition and classification of fault damage zones: a review and a new methodological approach[J]. Earth-Science Reviews, 2016, 152: 70-87. doi: 10.1016/j.earscirev.2015.11.006 [3] COWIE P A, SCHOLZ C H. Growth of faults by accumulation of seismic slip[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B7): 11085-11095. doi: 10.1029/92JB00586 [4] CAINE J S, EVANS J P, FORSTER C B. Fault zone architecture and permeability structure[J]. Geology, 1996, 24(11): 1025-1028. doi: 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2 [5] ANTONELLINI M, CILONA A, TONDI E, et al. Fluid flow numerical experiments of faulted porous carbonates, northwest Sicily (Italy)[J]. Marine and Petroleum Geology, 2014, 55: 186-201. doi: 10.1016/j.marpetgeo.2013.12.003 [6] DE JOUSSINEAU G, AYDIN A. The evolution of the damage zone with fault growth in sandstone and its multiscale characte-ristics[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B12): B12401. doi: 10.1029/2006JB004711 [7] GOGONENKOV U N, TIMURZIEV A I. strike-slip faulting in the west Siberian platform: insights from 3D seismic imagery[J]. Comptes Rendus Geoscience, 2012, 344(3/4): 214-226. [8] MITRA S, PAUL D. Structural geometry and evolution of releasing and restraining bends: insights from laser-scanned experimental models[J]. AAPG Bulletin, 2011, 95(7): 1147-1180. doi: 10.1306/09271010060 [9] MCCLAY K, BONORA M. Analog models of restraining stepovers in strike-slip fault systems[J]. AAPG Bulletin, 2001, 85(2): 233-260. [10] FLODIN E A, AYDIN A. Evolution of a strike-slip fault network, valley of fire state park, southern Nevada[J]. GSA Bulletin, 2004, 116(1/2): 42-59. [11] NADIMI A, KONON A. strike-slip faulting in the central part of the Sanandaj-Sirjan zone, Zagros orogen, Iran[J]. Journal of Structural Geology, 2012, 40: 2-16. doi: 10.1016/j.jsg.2012.04.007 [12] BELLOT J P. Hydrothermal fluids assisted crustal-scale strike-slip on the Argentat fault zone[J]. Tectonophysics, 2008, 450(1/4): 21-33. [13] 赵野, 杨海风, 黄振, 等. 渤海海域庙西南洼陷走滑构造特征及其对油气成藏的控制作用[J]. 油气地质与采收率, 2020, 27(4): 35-44. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202004005.htmZHAO Ye, YANG Haifeng, HUANG Zhen, et al. Strike-slip structural characteristics and its controlling effect on hydrocarbon accumulation in Miaoxinan Sag, Bohai Sea[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(4): 35-44. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202004005.htm [14] 程燕君, 吴智平, 张杰. 济阳坳陷长堤地区走滑构造特征及对油气聚集的控制作用[J]. 油气地质与采收率, 2020, 27(2): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202002006.htmCHENG Yanjun, WU Zhiping, ZHANG Jie. Characteristics of strike-slip faults and its control on hydrocarbon accumulation in Changdi area of Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202002006.htm [15] 丁文龙, 林畅松, 漆立新, 等. 塔里木盆地巴楚隆起构造格架及形成演化[J]. 地学前缘, 2008, 15(2): 242-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802032.htmDING Wenlong, LIN Changsong, QI Lixin, et al. Structural framework and evolution of Bachu Uplift in Tarim Basin[J]. Earth Science Frontiers, 2008, 15(2): 242-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802032.htm [16] 汤良杰, 邱海峻, 云露, 等. 塔里木盆地多期改造-晚期定型复合构造与油气战略选区[J]. 吉林大学学报(地球科学版), 2014, 44(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201401001.htmTANG Liangjie, QIU Haijun, YUN Lu, et al. Poly-phase reform late-stage finalization composite tectonics and strategic area selection of oil and gas resources in Tarim Basin, NW China[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201401001.htm [17] 何登发, 周新源, 杨海军, 等. 塔里木盆地克拉通内古隆起的成因机制与构造类型[J]. 地学前缘, 2008, 15(2): 207-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802029.htmHE Dengfa, ZHOU Xinyuan, YANG Haijun, et al. Formation mechanism and tectonic types of intracratonic paleo-uplifts in the Tarim Basin[J]. Earth Science Frontiers, 2008, 15(2): 207-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802029.htm [18] 张宗命, 贾承造. 塔里木克拉通盆地内古隆起及其找油气方向[J]. 西安石油学院院报, 1997, 12(3): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY703.000.htmZHANG Zongming, JIA Chengzao. Palaeohighs in craton basin of Talimu and the exploration objectives[J]. Journal of Xi'an Petroleum Institute, 1997, 12(3): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY703.000.htm [19] 周玉琦, 黎玉战, 侯鸿斌. 塔里木盆地塔河油田的勘探实践与认识[J]. 石油实验地质, 2001, 23(4): 363-367. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200104000.htmZHOU Yuqi, LI Yuzhan, HOU Hongbin. The exploration and development in Tahe Oilfield, Tarim Basin[J]. Petroleum Geology & Experiment, 2001, 23(4): 363-367. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200104000.htm [20] 康玉柱. 海相成油新理论与塔河大油田的发现[J]. 地质力学学报, 2002, 8(3): 201-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200203001.htmKANG Yuzhu. New theory of marine oil formation and discover of Tahe Oilfield, northern Tarim Basin[J]. Journal of Geomechanics, 2002, 8(3): 201-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200203001.htm [21] 陈红汉, 吴悠, 丰勇, 等. 塔河油田奥陶系油气成藏期次及年代学[J]. 石油与天然气地质, 2014, 35(6): 806-819. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406010.htmCHEN Honghan, WU You, FENG Yong, et al. Timing and chronology of hydrocarbon charging in the Ordovician of Tahe Oilfield, Tarim Basin, NW China[J]. Oil & Gas Geology, 2014, 35(6): 806-819. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406010.htm [22] 闫相宾, 张涛. 塔河油田碳酸盐岩大型隐蔽油藏成藏机理探讨[J]. 地质论评, 2004, 50(4): 370-376. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200404005.htmYAN Xiangbin, ZHANG Tao. Discussion on forming mechanism of the large-scale carbonate rock subtle reservoir in the Tahe Oilfield[J]. Geological Review, 2004, 50(4): 370-376. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200404005.htm [23] 云露, 蒋华山. 塔河油田成藏条件与富集规律[J]. 石油与天然气地质, 2007, 28(6): 768-775. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200706011.htmYUN Lu, JIANG Huashan. Hydrocarbon accumulation conditions and enrichment rules in Tahe Oilfield[J]. Oil & Gas Geology, 2007, 28(6): 768-775. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200706011.htm [24] 吴梅莲, 刘永福, 彭鹏, 等. 轮南古潜山走滑断裂特征及其对油气成藏的影响[J]. 断块油气田, 2021, 28(4): 456-462. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202104006.htmWU Meilian, LIU Yongfu, PENG Peng, et al. Characteristics of strike-slip faults in Lunnan buried hill and its influence on hydrocarbon accumulation[J]. Fault-Block Oil and Gas Field, 2021, 28(4): 456-462. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202104006.htm [25] 韩俊, 况安鹏, 能源, 等. 顺北5号走滑断裂带纵向分层结构及其油气地质意义[J]. 新疆石油地质, 2021, 42(2): 152-160. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102004.htmHAN Jun, KUANG Anpeng, NENG Yuan, et al. Vertical layered structure of Shunbei No. 5 strike-slip fault zone and its significance on hydrocarbon accumulation[J]. Xinjiang Petroleum Geology, 2021, 42(2): 152-160. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102004.htm [26] 何光玉, 顾忆, 赵永强, 等. 塔里木盆地北缘沙雅隆起两阶段走滑变形的证据[J]. 石油实验地质, 2020, 42(2): 172-176. doi: 10.11781/sysydz202002172HE Guangyu, GU Yi, ZHAO Yongqiang, et al. Evidence of two-stage strike-slip structural deformation of Shaya Uplift, northern Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(2): 172-176. doi: 10.11781/sysydz202002172 [27] 赵永强, 云露, 王斌, 等. 塔里木盆地塔河油田中西部奥陶系油气成藏主控因素与动态成藏过程[J]. 石油实验地质, 2021, 43(5): 758-766. doi: 10.11781/sysydz202105758ZHAO Yongqiang, YUN Lu, WANG Bin, et al. Main constrains and dynamic process of Ordovician hydrocarbon accumulation, central and western Tahe Oil Field, Tarim Basin[J]. Petroleum Geology & Experiment, 2021, 43(5): 758-766. doi: 10.11781/sysydz202105758 [28] 漆立新, 云露. 塔河油田奥陶系碳酸盐岩岩溶发育特征与主控因素[J]. 石油与天然气地质, 2010, 31(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201001005.htmQI Lixin, YUN Lu. Development characteristics and main controlling factors of the Ordovician carbonate karst in Tahe Oilfield[J]. Oil & Gas Geology, 2010, 31(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201001005.htm [29] 吕海涛, 丁勇, 耿锋. 塔里木盆地奥陶系油气成藏规律与勘探方向[J]. 石油与天然气地质, 2014, 35(6): 798-805. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406009.htmLÜ Haitao, DING Yong, GENG Feng. Hydrocarbon accumulation patterns and favorable exploration areas of the Ordovician in Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 798-805. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406009.htm [30] 顾忆, 黄继文, 贾存善, 等. 塔里木盆地海相油气成藏研究进展[J]. 石油实验地质, 2020, 42(1): 1-12. doi: 10.11781/sysydz202001001GU Yi, HUANG Jiwen, JIA Cunshan. Research progress on marine oil and gas accumulation in Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 1-12. doi: 10.11781/sysydz202001001 [31] 邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htmDENG Shang, LI Huili, ZHANG Zhongpei, et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm [32] GOLDSTEIN R H. Fluid inclusions in sedimentary and diagenetic systems[J]. Lithos, 2001, 55(1/4): 159-193. [33] BOURDET J, PIRONON J, LEVRESSE G, et al. Petroleum type determination through homogenization temperature and vapour volume fraction measurements in fluid inclusions[J]. Geofluids, 2008, 8(1): 46-59. [34] GUO Xiaowen, LIU Keyu, JIA Chengzao, et al. Fluid evolution in the Dabei Gas Field of the Kuqa Depression, Tarim Basin, NW China: implications for fault-related fluid flow[J]. Marine and Petroleum Geology, 2016, 78: 1-16. [35] 郭小文, 陈家旭, 袁圣强, 等. 含油气盆地激光原位方解石U-Pb年龄对油气成藏年代的约束: 以渤海湾盆地东营凹陷为例[J]. 石油学报, 2020, 41(3): 284-291. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202003005.htmGUO Xiaowen, CHEN Jiaxu, YUAN Shengqiang, et al. Constraint of in-situ calcite U-Pb dating by laser ablation on geochronology of hydrocarbon accumulation in petroliferous basins: a case study of Dongying Sag in the Bohai Bay Basin[J]. Acta Petrolei Sinica, 2020, 41(3): 284-291. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202003005.htm