Influence of geothermal field on ultra-deep Ordovician oil and gas in Shunbei field, Tarim Basin: a case study of Shunbei No. 5 strike-slip fault
-
摘要: 塔里木盆地顺北油气田走滑断裂带奥陶系超深层油气资源类型、油气性质呈现规律性变化,油气分布规律主控因素不清制约了资源类型与勘探序列评价。为研究温度场对深层油气的影响,开展了顺北5号断裂带现今实测温度资料统计分析、关键成藏期热史恢复、烃源岩热演化与奥陶系油气性质和油气成熟度对应关系研究。结果表明,顺北地区现今地温场纵向上呈现由浅层向深层地温梯度逐渐降低的特征,寒武系玉尔吐斯组烃源岩的现今地温和关键成藏期古地温均呈现由北往南逐渐升高的特征。在超深层低地温梯度背景下,顺北奥陶系超深层油藏温度未达到原油大量裂解温度窗,为液态石油的保存提供了有利条件;在关键成藏期——海西晚期,本地寒武系玉尔吐斯组烃源岩由北往南热演化程度逐渐增加,在高压抑制生烃演化作用下,顺北5号断裂带北段和中段以生油阶段为主,南段开始以生凝析油气阶段为主,演化产物与现今奥陶系超深层油气藏类型、原油密度、天然气干燥系数、生产气油比、油气热演化程度平面分布特征具有较好一致性,指示地温场控制下的烃源岩热演化差异是资源类型和油气性质差异分布的主要影响因素。Abstract: The types and properties of the ultra-deep Ordovician oil and gas resources in the strike-slip fault zone of the Shunbei oil and gas field in the Tarim Basin show regular changes. The main controlling factors of oil and gas distributional characters are unclear, which restricts the evaluation of resource types and exploration sequences. To study the consequences of the thermal field on oil and gas, the statistical analyses of the current measured temperature of the Shunbei No. 5 fault zone, the restoration of the thermal history[JP] of the key accumulation period, the thermal evolution of the source rocks, and the Ordovician oil and gas properties and maturity are carried out. Results show that present geothermal field in the Shunbei area has a vertical gradient gradually decreasing from shallow to deep, and the present geothermal temperature as well as the paleotemperature of key accumulation period of the source rocks of the Cambrian Yuertus Formation gradually increase from north to south. With the background of ultra-deep low geothermal gradient, the temperature of the Shunbei Ordovician ultra-deep reservoir did not reach the cracking temperature point for large amounts of crude oil, which provided favorable conditions for the preservation of liquid oil. In the critical accumulation period, the late Hercynian, the thermal evolution degree of the local Cambrian Yuertus Formation source rocks gradually increases from north to south. Since high pressure inhibited the evolution of hydrocarbon generation, the northern and middle segments of the Shunbei No. 5 fault zone are mainly oil-generating, while the southern segment is condensate-gas-generating. The evolution products are in good consistency with the current Ordovician ultra-deep oil and gas reservoir types, crude oil density, natural gas drying coefficient, production gas/oil ratio, and the plane distribution characteristics of oil and gas thermal evolution degree, indicating that the thermal evolution difference of source rocks under the control of geothermal field is the main factor affecting the distribution of resource types and oil and gas properties.
-
Key words:
- strike-slip fault /
- thermal evolution degree /
- source rock /
- geothermal field /
- Shunbei oil and gas field /
- Tarim Basin
-
表 1 塔里木盆地顺北5号断裂带钻井超深层现今温度统计
Table 1. Present temperature statistics of ultra-deep drilling formations in Shunbei No. 5 fault zone, Tarim Basin
位置 井号 实钻T74深度/m 6 900 m温度计实测 油藏中深/m 油藏底部垂深/m 油藏中深地温梯度/(℃·hm-1) 平均地温梯度/(℃·hm-1) 实测油藏温度/℃ 预测现今玉尔吐斯组 地温梯度/(℃·hm-1) 温度/℃ 埋深/m 地层温度/℃ 北段 SHB5-4H 7 385.0 1.56 140.01 7 436.94 7 480.28 1.53 1.95 145.30 10 567.0 182 SHB5-3 7 338.0 1.44 139.43 7 566.50 7 746.00 1.94 147.96 10 742.5 186 SHB5 7 340.5 1.53 139.52 7 649.30 7 650.64 1.56 1.97 150.45 10 670.0 185 SHB5-2 7 486.0 1.76 140.86 7 509.80 7 533.62 1.59 2.00 150.83 10 738.0 185 SHB5-13H 7 501.0 1.66 141.00 7 589.87 7 589.88 2.04 154.54 10 812.0 194 中段 SHB51X 7 556.0 1.72 146.47 7 619.80 7 683.64 1.39 2.05 157.34 10 879.0 204 SHB5-5H 7 626.0 7 792.00 8 032.84 1.53 2.04 160.99 11 036.5 200 SHB501 7 638.0 1.66 146.60 7 748.75 7 816.00 1.75 2.08 161.27 11 041.0 203 SHB5-15H 7 628.0 1.87 146.26 7 751.00 7 870.17 1.84 2.09 161.65 11 046.0 206 SHB5-6 7 514.0 1.89 146.41 7 730.00 7 942.65 1.82 2.08 162.33 11 135.0 205 南段 SHB53X 7 745.0 1.88 146.64 7 829.90 7 913.70 1.77 2.08 163.11 11 288.0 209 SHB53-2H 7 751.0 1.70 154.09 8 157.97 8 157.98 1.70 2.12 173.48 11 525.0 SHB57X 7 466.0 1.99 150.31 7 601.98 7 767.65 1.81 2.14 163.05 11 648.0 表 2 塔里木盆地顺北5号断裂带天然气组分统计数据
Table 2. Statistical data of natural gas components in Shunbei No. 5 fault zone, Tarim Basin
分带 井号 烃类气体/% 非烃类气体/% 干燥系数 相对密度 甲烷 乙烷 C2+ N2 CO2 北段 SHB5-4H 48.9 17.6 30.7 19.3 1.1 0.62 0.88 SHB5-3 55.8 16.1 29.7 12.0 2.4 0.65 0.87 SHB5 49.8 17.4 31.1 18.2 1.8 0.62 0.86 SHB5-2 55.1 17.2 31.4 12.4 2.2 0.64 0.86 SHB5-12H 53.0 17.0 32.4 12.2 3.0 0.62 0.89 SHB5-13H 53.6 18.6 31.8 11.8 2.7 0.63 0.87 中段 SHB51X 73.2 10.3 18.7 6.4 1.7 0.80 0.75 SHB5-7 77.5 9.5 15.1 5.7 1.7 0.84 0.71 SHB52A 78.0 7.0 9.6 11.5 0.9 0.89 0.68 SHB5-10 78.9 8.7 12.7 6.2 2.3 0.86 0.69 SHB5-15H 81.6 8.0 12.0 4.4 2.0 0.87 0.68 SHB5-6 78.5 12.6 18.6 2.5 0.3 0.81 0.70 南段 SHB53X 88.2 4.8 6.9 2.00 2.00 0.93 0.67 SHB53-2H 87.0 2.4 3.6 6.04 3.36 0.97 0.64 SHB57X 94.2 1.3 1.5 2.42 1.96 0.98 0.59 -
[1] 郑孟林, 王毅, 金之钧, 等. 塔里木盆地叠合演化与油气聚集[J]. 石油与天然气地质, 2014, 35(6): 925-934. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406021.htmZHENG Menglin, WANG Yi, JIN Zhijun, et al. Superimposition, evolution and petroleum accumulation of Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 925-934. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406021.htm [2] 邱楠生, 汪集暘, 梅庆华, 等. (U-Th)/He年龄约束下的塔里木盆地早古生代构造-热演化[J]. 中国科学(地球科学), 2010, 40(12): 1669-1683. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201012005.htmQIU Nansheng, WANG Jiyang, MEI Qinghua, et al. Constraints of (U-Th)/He ages on Early Paleozoic tectonothermal evolution of the Tarim Basin, China[J]. Science China (Earth Sciences), 2010, 53(7): 964-976. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201012005.htm [3] 李慧莉, 邱楠生, 金之钧, 等. 塔里木盆地的地质热历史[J]. 中国西部油气地质, 2005, 1(1): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY200404008.htmLI Huili, QIU Nansheng, JIN Zhijun, et al. Geothermal history in the Tarim Basin[J]. West China Petroleum Geosciences, 2005, 1(1): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY200404008.htm [4] 刘绍文, 王良书, 李成, 等. 塔里木盆地岩石圈热-流变学结构和新生代热体制[J]. 地质学报, 2006, 80(3): 344-350. doi: 10.3321/j.issn:0001-5717.2006.03.005LIU Shaowen, WANG Liangshu, LI Cheng, et al. Lithospheric thermo-rheological structure and Cenozoic thermal regime in the Tarim Basin, Northwest China[J]. Acta Geologica Sinica, 2006, 80(3): 344-350. doi: 10.3321/j.issn:0001-5717.2006.03.005 [5] 李建忠, 陶小晚, 白斌, 等. 中国海相超深层油气地质条件、成藏演化及有利勘探方向[J]. 石油勘探与开发, 2021, 48(1): 52-67. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101007.htmLI Jianzhong, TAO Xiaowan, BAI Bin, et al. Geological conditions, reservoir evolution and favorable exploration directions of marine ultra-deep oil and gas in China[J]. Petroleum Exploration and Development, 2021, 48(1): 52-67. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101007.htm [6] 贾承造, 庞雄奇. 深层油气地质理论研究进展与主要发展方向[J]. 石油学报, 2015, 36(12): 1457-1469. doi: 10.7623/syxb201512001JIA Chengzao, PANG Xiongqi. Research processes and main development directions of deep hydrocarbon geological theories[J]. Acta Petrolei Sinica, 2015, 36(12): 1457-1469. doi: 10.7623/syxb201512001 [7] 邱楠生, 刘雯, 徐秋晨, 等. 深层一古老海相层系温压场与油气成藏[J]. 地球科学, 2018, 43(10): 3511-3525. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201810015.htmQIU Nansheng, LIU Wen, XU Qiuchen, et al. Temperature-pressure field and hydrocarbon accumulation in deep-ancient marine strata[J]. Earth Science, 2018, 43(10): 3511-3525. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201810015.htm [8] 唐磊, 王建峰, 曹敬华, 等. 塔里木盆地顺北地区超深断溶体油藏地质工程一体化模式探索[J]. 油气藏评价与开发, 2021, 11(3): 329-339. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103007.htmTANG Lei, WANG Jianfeng, CAO Jinghua, et al. Geology-engineering integration mode of ultra-deep fault-karst reservoir in Shunbei area, Tarim Basin[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 329-339. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103007.htm [9] 王志坚. 深层-超深层异常高压油藏工艺技术对策[J]. 油气地质与采收率, 2020, 27(5): 126-133. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202005016.htmWANG Zhijian. Technological strategies for deep and ultra-deep reservoirs with abnormally high pressure[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5): 126-133. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202005016.htm [10] 李阳, 薛兆杰. 中国石化油气田开发工程技术面临的挑战与发展方向[J]. 石油钻探技术, 2016, 44(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201601001.htmLI Yang, XUE Zhaojie. Challenges and development tendency of engineering technology in oil and gas development in SINOPEC[J]. Petroleum Drilling Techniques, 2016, 44(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201601001.htm [11] 孙龙德, 邹才能, 朱如凯, 等. 中国深层油气形成、分布与潜力分析[J]. 石油勘探与开发, 2013, 40(6): 641-649. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201306001.htmSUN Longde, ZOU Caineng, ZHU Rukai, et al. Formation, distribution and potential of deep hydrocarbon resources in China[J]. Petroleum Exploration and Development, 2013, 40(6): 641-649. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201306001.htm [12] 康玉柱. 塔里木盆地油气资源潜力及勘探方向[J]. 石油科学通报, 2018, 3(4): 369-375. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201804001.htmKANG Yuzhu. The resource potential and exploration for oil and gas in the Tarim Basin[J]. Petroleum Science Bulletin, 2018, 3(4): 369-375. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201804001.htm [13] 蔡勋育, 刘金连, 赵培荣, 等. 中国石化油气勘探进展与上游业务发展战略[J]. 中国石油勘探, 2020, 25(1): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001002.htmCAI Xunyu, LIU Jinlian, ZHAO Peirong, et al. Oil and gas exploration progress and upstream development strategy of SINOPEC[J]. China Petroleum Exploration, 2020, 25(1): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001002.htm [14] 漆立新, 云露, 曹自成, 等. 顺北油气田地质储量评估与油气勘探方向[J]. 新疆石油地质, 2021, 42(2): 127-135. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102001.htmQI Lixin, YUN Lu, CAO Zicheng, et al. Geological reserves assessment and petroleum exploration targets in Shunbei oil & gas field[J]. Xinjiang Petroleum Geology, 2021, 42(2): 127-135. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102001.htm [15] 漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探, 2016, 21(3): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201603004.htmQI Lixin. Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole uplift, Tarim Basin[J]. China Petroleum Exploration, 2016, 21(3): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201603004.htm [16] 云露. 顺北地区奥陶系超深断溶体油气成藏条件[J]. 新疆石油地质, 2021, 42(2): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102002.htmYUN Lu. Hydrocarbon accumulation of ultra-deep Ordovician fault-karst reservoirs in Shunbei area[J]. Xinjiang Petroleum Geology, 2021, 42(2): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102002.htm [17] 杨海军, 陈永权, 田军, 等. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 2020, 25(2): 62-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202002007.htmYANG Haijun, CHEN Yongquan, TIAN Jun, et al. Great discovery and its significance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(2): 62-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202002007.htm [18] 韩俊, 况安鹏, 能源, 等. 顺北5号走滑断裂带纵向分层结构及其油气地质意义[J]. 新疆石油地质, 2021, 42(2): 152-160. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102004.htmHAN Jun, KUANG Anpeng, NENG Yuan, et al. Vertical layered structure of Shunbei No. 5 strike-slip fault zone and its significance on hydrocarbon accumulation[J]. Xinjiang Petroleum Geology, 2021, 42(2): 152-160. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102004.htm [19] 刘宝增. 塔里木盆地顺北地区油气差异聚集主控因素分析: 以顺北1号、顺北5号走滑断裂带为例[J]. 中国石油勘探, 2020.25(3): 83-95. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202003008.htmLIU Baozeng. Analysis of main controlling factors of oil and gas differential accumulation in Shunbei area, Tarim Basin: taking Shunbei No. 1 and No. 5 strike slip fault zones as examples[J]. China Petroleum Exploration, 2020, 25(3): 83-95. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202003008.htm [20] 高晓歌, 吴鲜, 洪才均, 等. 顺北油田1号断裂带奥陶系原油地球化学特征[J]. 石油地质与工程, 2018, 32(6): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201806010.htmGAO Xiaoge, WU Xian, HONG Caijun, et al. Geochemical characteristics of Ordovician crude oil in the No. 1 fault zone of Shunbei oilfield[J]. Petroleum Geology and Engineering, 2018, 32(6): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201806010.htm [21] 罗明霞, 夏永涛, 邵小明, 等. 塔里木盆地顺北油气田不同层系原油地球化学特征对比及成因分析[J]. 石油实验地质, 2019, 41(6): 849-854. doi: 10.11781/sysydz201906849LUO Mingxia, XIA Yongtao, SHAO Xiaoming, et al. Geochemical characteristics and origin of oil from different strata in Shunbei oil and gas field, Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41(6): 849-854. doi: 10.11781/sysydz201906849 [22] 王斌, 赵永强, 何生, 等. 塔里木盆地顺北5号断裂带北段奥陶系油气成藏期次及其控制因素[J]. 石油与天然气地质, 2020, 41(5): 965-974. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005008.htmWANG Bin, ZHAO Yongqiang, HE Sheng, et al. Hydrocarbon accumulation stages and their controlling factors in the northern Ordovician Shunbei 5 fault zone, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(5): 965-974. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005008.htm [23] 邱楠生, 何丽娟, 常健, 等. 沉积盆地热历史重建研究进展与挑战[J]. 石油实验地质, 2020, 42(5): 790-802. doi: 10.11781/sysydz202005790QIU Nansheng, HE Lijuan, CHANG Jian, et al. Research progress and challenges of thermal history reconstruction in sedimentary basins[J]. Petroleum Geology & Experiment, 2020, 42(5): 790-802. doi: 10.11781/sysydz202005790 [24] 付小东, 秦建中, 姚根顺, 等. 两种温压体系下烃源岩生烃演化特征对比及其深层油气地质意义[J]. 地球化学, 2017, 46(3): 262-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201703006.htmFU Xiaodong, QIN Jianzhong, YAO Genshun, et al. The comparison of hydrocarbon generation and evolution characteristics between two temperature-pressure simulation systems and its geological significance for deep reservoir exploration[J]. Geochimica, 2017, 46(3): 262-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201703006.htm [25] 郝芳, 邹华耀, 方勇, 等. 超压环境有机质热演化和生烃作用机理[J]. 石油学报, 2006, 27(5): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200605001.htmHAO Fang, ZOU Huayao, FANG Yong, et al. Kinetics of organic matter maturation and hydrocarbon generation in overpressure environment[J]. Acta Petrolei Sinica, 2006, 27(5): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200605001.htm [26] 郝芳, 邹华耀, 倪建华, 等. 沉积盆地超压系统演化与深层油气成藏条件[J]. 地球科学(中国地质大学学报), 2002, 27(5): 610-615. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205021.htmHAO Fang, ZOU Huayao, NI Jianhua, et al. Evolution of Overpressured systems in sedimentary basins and conditions for deep oil/gas accumulation[J]. Earth Science(Journal of China University of Geosciences), 2002, 27(5): 610-615. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205021.htm [27] 谷茸, 云露, 朱秀香, 等. 塔里木盆地顺北油田油气来源研究[J]. 石油实验地质, 2020, 42(2): 248-254. doi: 10.11781/sysydz202002248GU Rong, YUN Lu, ZHU Xiuxiang, et al. Oil and gas sources in Shunbei Oilfield, Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(2): 248-254. doi: 10.11781/sysydz202002248 [28] 吴鲜, 曹自成, 路清华, 等. 塔里木盆地顺北地区白垩系原油成因类型与来源[J]. 石油实验地质, 2020, 42(2): 255-262. doi: 10.11781/sysydz202002255WU Xian, CAO Zicheng, LU Qinghua, et al. Genetic types and sources of Cretaceous crude oil in Shunbei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(2): 255-262. doi: 10.11781/sysydz202002255 [29] 王民, 黄靖轩, 卢双舫, 等. 我国不同原油裂解成气动力学研究[J]. 海相油气地质, 2017, 22(2): 8-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201702002.htmWANG Min, HUANG Jingxuan, LU Shuangfang, et al. Kinetic features of gas oil cracking for the different types of crude oil in China[J]. Marine Origin Petroleum Geology, 2017, 22(2): 8-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201702002.htm [30] 卢双舫, 薛海涛, 钟宁宁. 石油保存下限的化学动力学研究[J]. 石油勘探与开发, 2002, 29(6): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200206000.htmLU Shuangfang, XUE Haitao, ZHONG Ningning. The chemical kinetic study of the oil preservation threshold[J]. Petroleum Exploration and Development, 2002, 29(6): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200206000.htm