Paleo-environment of the first member of Niutitang Formation on the southern margin of Huangling anticline, western Hubei province: a case study of well ZD-1
-
摘要: 下寒武统牛蹄塘组为鄂西地区重要的页岩气勘探目的层之一,针对牛蹄塘组一段(Ꞓ1n1,简称牛一段)古沉积环境研究较为薄弱的现状,对宜昌黄陵背斜南缘秭地1井牛一段的古气候、古氧化还原条件及古生产力等沉积环境演化特征进行了综合分析,并建立了沉积环境演化模式图。与贫有机质层段相比,富有机质层段TOC含量高,SiO2含量更高,而CaO含量更低。U、V、Ni、Zn、Cu更为富集。化学蚀变指数(CIA)显示牛蹄塘组一段总体处于中等风化强度,富有机质层段气候温暖湿润,且地层往上气候变得炎热潮湿。由底到顶,牛一段主要经历了富有机质层段下部厌氧到富有机质层段上部缺氧再到贫有机质层段含氧3个阶段。总体上,研究区处于弱滞留—中等滞留盆地,富有机质层段由于Mo含量更高而滞留程度更高。富有机质层段具有更高的古生产力,且存在古生产力快速下降的2个时期,这与海平面下降导致水体由厌氧转化为氧化有直接关系。根据古气候、古氧化还原条件和古生产力特征可将研究区牛一段划分为3个演化阶段。Abstract: The Lower Cambrian Niutitang Formation is one of the important targets for shale gas exploration in the western Hubei province. In view of the relatively weak research on the paleo-sedimentary environment of the 1st member of Niutitang Formation (Ꞓ1n1), the paleo-climate, paleo-redox conditions and paleo-productivity of the Ꞓ1n1 were comprehensively studied based on data collected from well ZD-1 on the southern margin of the Huangling anticline in Yichang area, and a model of the evolution of sedimentary environment was proposed. Compared with the organic-poor strata, the organic-rich strata have higher TOC content, much higher SiO2, U, V, Ni, Zn and Cu contents, and lower CaO content. The chemical index of alteration (CIA) shows that the Ꞓ1n1 has experienced weathering effect of moderate intensity. The climate was warm and humid when the organic-rich layers deposited, and became hot and wet when the upper layers deposited. The redox conditions of Ꞓ1n1 have experienced 3 stages, including euxinic in the lower part of organic-rich strata, dysoxic in the upper part of organic-rich strata, and oxic in organic-poor strata. In general, the study area developed in a weak-medium retention basin. The ratio of MoEF/UEF is usually 1-3 times than that of normal seawater due to the high content of Mo, showing much higher retention rate. The organic-rich strata have higher paleo-productivity, and there are 2 periods of rapid decline of paleo-productivity, which is directly related to the change of water from anaerobic to oxidized due to the decrease of sea level. According to paleo-climate, paleo-redox conditions and paleo-productivity characteristics, the Ꞓ1n1 can be divided into 3 evolution stages.
-
Key words:
- paleo-environment /
- shale /
- Huangling anticline /
- Niutitang Formation /
- Lower Cambrian /
- western Hubei
-
图 7 鄂西地区黄陵背斜南缘宜地2井牛一段UEF—MoEF协变模式及Mo—TOC相关性
数据源自参考文献[11]。
Figure 7. UEF-MoEF covariation and TOC vs. MoEF scatter plots for samples from Ꞓ1n1, well ZD-1, southern margin of Huangling anticline, western Hubei
表 1 鄂西地区黄陵背斜南缘秭地1井样品主量元素含量统计
Table 1. Contents of major elements of samples from Ꞓ1n1, well ZD-1, southern margin of Huangling anticline, western Hubei
贫有机质样品 富有机质样品 PAAS Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 ω(TOC) /% 0.49 0.65 1.53 0.69 1.85 2.12 3.24 4.82 3.92 8.77 SiO2/% 43.66 27.06 50.35 24.43 51.44 33.92 61.41 60.60 52.33 56.77 62.8 TiO2/% 0.57 0.30 0.66 0.17 0.59 0.42 0.41 0.50 0.41 0.47 1 Al2O3/% 10.61 6.42 13.76 3.62 12.37 9.54 9.7 9.05 7.73 8.13 18.9 Fe2O3/% 4.53 2.66 4.99 2.06 4.69 3.43 3.79 2.73 3.39 2.81 7.22 MnO/% 0.07 0.03 0.04 0.04 0.04 0.04 0.03 0.04 0.07 0.02 0.11 MgO/% 1.56 1.06 2.15 1.35 2.03 2.53 1.57 1.25 3.37 1.37 2.2 CaO/% 16.87 31.10 9.11 35.34 10.35 21.28 5.32 6.96 10.07 7.07 1.3 Na2O/% 1.11 0.69 1.01 0.50 1.04 0.78 1.27 0.99 0.90 0.72 1.2 K2O/% 2.26 1.34 3.11 0.69 2.64 2.09 2.08 2.94 2.64 3.41 3.7 P2O5/% 0.15 0.2 0.19 0.07 0.18 0.09 0.12 0.14 0.15 0.20 0.16 Fe2O3/TiO2 7.95 8.87 7.56 12.12 7.95 8.17 9.24 5.46 8.27 5.98 7.22 Al2O3/(Al2O3+Fe2O3) 0.70 0.71 0.73 0.64 0.73 0.74 0.72 0.77 0.7 0.74 0.72 Al/(Al+Fe+Mn) 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.66 CIA 63.48 63.29 67.26 60.19 66.30 66.37 60.12 58.40 57.02 57.26 70.36 CIACorr 66.40 65.90 71.90 61.30 70.00 70.50 62.60 65.80 64.60 69.30 73.90 注:PAAS为上太古界澳大利亚页岩,数据来自于参考文献[17]; CIA为化学蚀变指数,见公式(2);CIACorr为矫正后的化学蚀变指数。 表 2 鄂西地区黄陵地区南缘秭地1井微量元素含量统计
Table 2. Contents of trace elements of samples from Ꞓ1n1, well ZD-1, southern margin of Huangling anticline, western Hubei
微量元素 贫有机质样品 富有机质样品 PAAS Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Sc/10-6 10.57 6.39 13.70 3.67 12.86 9.81 9.80 9.07 7.36 7.46 16.00 V/10-6 96.08 64.43 124.25 44.93 173.20 86.85 798.30 247.36 74.71 963.02 150.00 Cr/10-6 59.63 35.67 78.19 20.93 77.71 51.57 64.27 56.42 43.12 65.37 110.00 Co/10-6 16.09 8.97 16.87 6.21 14.05 12.86 15.46 13.24 12.36 14.84 23.00 Ni/10-6 47.79 31.93 63.77 19.31 75.77 37.41 161.27 118.32 40.89 220.18 55.00 Cu/10-6 26.84 20.36 42.23 11.42 45.14 32.83 100.51 29.34 27.01 42.65 50.00 Zn/10-6 63.94 47.65 101.21 35.45 118.78 65.81 135.55 100.14 9.84 291.41 85.00 Ga/10-6 14.90 8.52 18.59 4.77 17.66 13.35 13.22 12.36 10.02 12.07 Rb/10-6 101.21 60.54 139.73 30.64 117.35 93.51 80.14 73.51 61.43 65.96 160.00 Sr/10-6 1 630.13 10 677.99 1 290.37 4 278.46 905.29 1 768.26 455.66 320.69 377.32 220.47 200.00 Zr/10-6 135.15 58.86 125.13 34.77 119.98 79.53 84.82 112.71 89.82 116.55 210.00 Ba/10-6 976.65 903.04 1 319.67 1 053.36 1 384.48 1 874.48 1 548.20 1 204.83 1 078.13 924.57 650.00 Hf/10-6 3.64 1.62 3.38 0.91 3.20 2.22 2.25 2.99 2.45 3.03 5.00 Th/10-6 10.30 5.57 12.40 3.29 12.04 9.16 8.09 7.06 5.79 6.67 14.60 U/10-6 3.98 5.10 5.18 4.36 6.82 4.93 31.72 38.85 35.52 75.02 3.10 La/10-6 32.31 17.55 36.04 11.26 36.25 27.60 22.90 22.36 21.30 24.08 38.00 Ce/10-6 62.41 34.86 68.08 22.66 66.78 52.67 44.41 39.98 39.69 35.43 80.00 Pr/10-6 6.97 3.96 7.71 2.53 7.65 6.06 5.24 4.53 4.48 5.05 8.90 Sr/Cu 60.73 524.51 30.55 374.69 20.05 53.86 4.53 10.93 13.97 5.17 4.00 Sr/Ba 1.67 11.82 0.98 4.06 0.65 0.94 0.29 0.27 0.35 0.24 1.67 V/Cr 1.61 1.81 1.59 2.15 2.23 1.68 12.42 4.38 1.73 14.73 1.36 U/Th 0.39 0.92 0.42 1.32 0.57 0.54 3.92 5.50 6.13 11.25 0.21 Ni/Co 2.97 3.56 3.78 3.11 5.39 2.91 10.43 8.93 3.31 14.84 2.39 Nixs+Cuxs+Znxs 33.14 35.39 68.88 29.79 115.34 40.14 299.81 156.82 24.96 472.51 Ni/Al 8.51 9.39 8.75 10.08 11.57 7.41 31.40 24.69 9.99 51.16 5.50 δCe 0.96 0.96 0.94 0.98 0.92 0.94 0.93 0.91 0.93 0.74 注:Nixs+Cuxs+Znxs为3个元素海洋沉积部分即生物成因的含量。 -
[1] 黄金亮, 邹才能, 李建忠, 等. 川南下寒武统筇竹寺组页岩气形成条件及资源潜力[J]. 石油勘探与开发, 2012, 39(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201009.htmHUANG Jinliang, ZOU Caineng, LI Jianzhong, et al. Shale gas generation and potential of the Lower Cambrian Qiongzhusi Formation in southern Sichuan Basin, China[J]. Petroleum Exploration and Development, 2012, 39(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201009.htm [2] 张鉴, 王兰生, 杨跃明, 等. 四川盆地海相页岩气选区评价方法建立及应用[J]. 天然气地球科学, 2016, 27(3): 433-441. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603007.htmZHANG Jian, WANG Lansheng, YANG Yueming, et al. The deve-lopment and application of the evaluation method of marine shale gas in Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(3): 433-441. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603007.htm [3] 韩双彪, 张金川, 李玉喜, 等. 黔北地区下寒武统牛蹄塘组页岩气地质调查井位优选[J]. 天然气地球科学, 2013, 24(1): 182-187. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201301028.htmHAN Shuangbiao, ZHANG Jinchuan, LI Yuxi, et al. The optimum selecting of shale gas well location for geological investigation in Niutitang Formation in Lower Cambrian, northern Guizhou area[J]. Natural Gas Geoscience, 2013, 24(1): 182-187. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201301028.htm [4] 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系-寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htmZOU Caineng, DU Jinhu, XU Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htm [5] 祝庆敏, 卢龙飞, 潘安阳, 等. 湘西地区下寒武统牛蹄塘组页岩沉积环境与有机质富集[J]. 石油实验地质, 2021, 43(5): 797-809. doi: 10.11781/sysydz202105797ZHU Qingmin, LU Longfei, PAN Anyang, et al. Sedimentary environment and organic matter enrichment of the Lower Cambrian Niutitang Formation shale, western Hunan Province, China[J]. Petroleum Geology & Experiment, 2021, 43(5): 797-809. doi: 10.11781/sysydz202105797 [6] 宁凡, 邹妞妞, 张大权, 等. 黔北地区下寒武统牛蹄塘组页岩特征研究[J]. 特种油气藏, 2020, 27(1): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202001009.htmNING Fan, ZHOU Niuniu, ZHANG Daquan, et al. Shale Characte-rization of the Lower Cambrian Niutitang Formation in Northern Guizhou[J]. Special Oil & Gas Reserviors, 2020, 27(1): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202001009.htm [7] 邱小松, 胡明毅, 胡忠贵. 中扬子地区下寒武统岩相古地理及页岩气成藏条件分析[J]. 中南大学学报(自然科学版), 2014, 45(9): 3174-3185. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201409033.htmQIU Xiaosong, HU Mingyi, HU Zhonggui. Lithofacies palaeogeographic characteristics and reservoir-forming conditions of shale gas of Lower Cambrian in Middle Yangtze region[J]. Journal of Central South University (Science and Technology), 2014, 45(9): 3174-3185. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201409033.htm [8] 李海, 白云山, 王保忠, 等. 湘鄂西地区下古生界页岩气保存条件[J]. 油气地质与采收率, 2014, 21(6): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201406005.htmLI Hai, BAI Yunshan, WANG Baozhong, et al. Preservation conditions research on shale gas in the Lower Paleozoic of western Hunan and Hubei area[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(6): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201406005.htm [9] 王佳, 李小刚, 黄文明. 湘鄂西-渝东地区牛蹄塘组页岩气勘探前景评价[J]. 地质科技情报, 2014, 33(4): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201404016.htmWANG Jia, LI Xiaogang, HUANG Wenming. The shale gas exploration prospect assess of the Niutitang Formation in western Hubei and Hunan-eastern Chongqing[J]. Geological Science and Technology Information, 2014, 33(4): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201404016.htm [10] 何庆, 高键, 董田, 等. 鄂西地区下寒武统牛蹄塘组页岩元素地球化学特征及沉积古环境恢复[J]. 沉积学报, 2021, 39(3): 686-703. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202103014.htmHE Qing, GAO Jian, DONG Tian, et al. Elemental geochemistry and paleo-environmental conditions of the Lower Cambrian Niutitang shale in western Hubei Province[J]. Acta Sedimentologica Sinica, 2021, 39(3): 686-703. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202103014.htm [11] 陈孝红, 危凯, 张保民, 等. 湖北宜昌寒武系水井沱组页岩气藏主控地质因素和富集模式[J]. 中国地质, 2018, 45(2): 207-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201802002.htmCHEN Xiaohong, WEI Kai, ZHANG Baimin, et al. Main geolo-gical factors controlling shale gas reservoir in the Cambrian Shuijingtuo Formation in Yichang of Hubei province as well as its and enrichment patterns[J]. Geology in China, 2018, 45(2): 207-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201802002.htm [12] ZHANG Junpeng, FAN Tailiang, ALGEO T J, et al. Paleo-marine environments of the Early Cambrian Yangtze Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 443: 66-79. [13] XU Lulu, HUANG Saipeng, LIU Zaoxue, et al. Geological controls of shale gas accumulation and enrichment mechanism in Lower Cambrian Niutitang Formation of western Hubei, Middle Yangtze, China[J]. Frontiers of Earth Science, 2021, 15(2): 310-331. [14] 许露露, 刘早学, 温雅茹, 等. 中扬子鄂西地区牛蹄塘组页岩储层特征及含气性研究[J]. 特种油气藏, 2020, 27(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202004001.htmXU Lulu, LIU Zaoxue, WEN Yaru, et al. Shale gas reservoir and gas-bearing properties of Middle Yangtze Niutitang Formation in western Hubei[J]. Special Oil & Gas Reservoirs, 2020, 27(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202004001.htm [15] 赵晨君, 康志宏, 侯阳红, 等. 下扬子二叠系泥页岩稀土元素地球化学特征及地质意义[J]. 地球科学, 2020, 45(11): 4118-4127. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202011016.htmZHAO Chenjun, KANG Zhihong, HOU Yanghong, et al. Geochemical characteristics of rare earth elements and their geolo-gical significance of Permian shales in Lower Yangtze area[J]. Earth Science, 2020, 45(11): 4118-4127. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202011016.htm [16] WU Wei, LIU Weiqing, MOU Chuanlong, et al. Organic-rich siliceous rocks in the Upper Permian Dalong Formation (NW Middle Yangtze): provenance, paleoclimate and paleoenvironment[J]. Marine and Petroleum Geology, 2021, 123: 104728. [17] MC LENNAN S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 1021. [18] 牟传龙, 葛祥英, 余谦, 等. 川西南地区五峰-龙马溪组黑色页岩古气候及物源特征: 来自新地2井地球化学记录[J]. 古地理学报, 2019, 21(5): 835-854. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201905011.htmMOU Chuanlong, GE Xiangying, YU Qian, et al. Palaeoclimatology and provenance of black shales from Wufeng-Longmaxi formations in southwestern Sichuan province: from geochemical records of well Xindi-2[J]. Journal of Palaeogeography, 2019, 21(5): 835-854. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201905011.htm [19] CULLERS R L, PODKOVYROV V N. The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia[J]. Precambrian Research, 2002, 117(3/4): 157-183. [20] NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717. [21] MCLENNAN S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295-303. [22] 郑一丁, 雷裕红, 张立强, 等. 鄂尔多斯盆地东南部张家滩页岩元素地球化学、古沉积环境演化特征及油气地质意义[J]. 天然气地球科学, 2015, 26(7): 1395-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201507023.htmZHENG Yiding, LEI Yuhong, ZHANG Liqiang, et al. Characte-ristics of element geochemistry and paleo sedimentary environment evolution of Zhangjiatan shale in the southeast of Ordos Basin and its geological significance for oil and gas[J]. Natural Gas Geoscience, 2015, 26(7): 1395-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201507023.htm [23] TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12-32. [24] 何龙, 王云鹏, 陈多福. 川南地区晚奥陶-早志留世沉积环境与古气候的地球化学特征[J]. 地球化学, 2019, 48(6): 555-566. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201906005.htmHE Long, WANG Yunpeng, CHEN Duofu. Geochemical features of sedimentary environment and paleoclimate during Late Ordovician to Early Silurian in southern Sichuan Basin[J]. Geochi-mica, 2019, 48(6): 555-566. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201906005.htm [25] GERMAN C R, ELDERFIELD H. Application of the Ce anomaly as a paleoredox indicator: the ground rules[J]. Paleoceanography, 1990, 5(5): 823-833. [26] ALGEO T J, TRIBOVILLARD N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211-225. [27] ALGEO T J, LYONS T W. Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceano-graphy, 2006, 21(1): PA1016. [28] 沈俊, 周炼, 冯庆来, 等. 华南二叠纪-三叠纪之交初级生产力的演化以及大隆组黑色岩系初级生产力的定量估算[J]. 中国科学: 地球科学, 2014, 44(1): 132-145. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201401014.htmSHEN Jun, ZHOU Lian, FENG Qinglai, et al. Paleo-productivity evolution across the Permian-Triassic boundary and quantitative calculation of primary productivity of black rock series from the Dalong Formation, South China[J]. Science China: Earth Sciences, 2014, 57(7): 1583-1594. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201401014.htm [29] SCHOEPFER S D, HENDERSON C M, GARRISON G H, et al. Termination of a continent-margin upwelling system at the Permian-Triassic boundary (Opal Creek, Alberta, Canada)[J]. Global and Planetary Change, 2013, 105: 21-35.