Evaluation of evaporative loss of hydrocarbon in shale samples and its geological implications
-
摘要: 游离烃含量是页岩油资源评价中最关键参数之一,但由于烃类散失的影响,实验测得的游离烃含量往往与真实含量差异较大,从而导致含油性评价结果“失真”。为研究含油泥页岩烃类散失过程,获取烃类散失量及校正系数,本文利用成熟度相近、不同岩相的新鲜含油岩心样品,对不同放置时间后样品的烃类残留量及残留组分开展实验并进行综合分析。研究认为,页岩样品烃类散失分早期快速散失和后期缓慢散失2个过程,挥发组分主要为C13—C15以前的低碳数烃类,中质—重质组分受影响较小;储集物性条件及原始含油量共同控制了烃类散失量及散失过程。原始含油量越高、储集物性越好的泥页岩样品烃类散失量越大,因此,在评价储集物性好的高含油的页岩油“甜点”段时,更需要注意原始烃含量的恢复。Abstract: Free hydrocarbon content is one of the key parameters for resource assessment of shale oil.However, due to the evaporative loss of hydrocarbon, the measured results from lab analysis differ greatly from real value, which leads to the "distortion" of shale oil resource assessment.To investigate the process of the evaporative loss and obtain the hydrocarbon loss amount and correction coefficient, a time-series of analysis has been carried out on fresh oil-bearing shale samples with similar maturity and different lithofacies for both the amount and the composition of the hydrocarbons retained in shale.Results suggest that there are two processes of early rapid and later slow evaporative loss. The volatile components are mainly light hydrocarbons with carbon numbers smaller than C13-C15, while the medium to heavy components are less affected. Both the amount and processes of hydrocarbon evaporative loss are controlled by the physical properties and original oil content of shale samples.The oil-bearing shale samples with higher original oil content and better physical properties appear to have more evaporative loss of hydrocarbons.Results also indicate that more attention should be exercised on original hydrocarbon content when conducting the shale oil resource assessment of "sweet spot" section with high oil content and good physical properties.
-
表 1 实验样品基础数据
Table 1. Basic information of experimental samples
井号 样品号 岩性 深度/m S1/(mg·g-1) S2/(mg·g-1) ω(TOC)/% Tmax/℃ 主要矿物含量/% 孔隙度/% 黏土 石英 长石 方解石 白云石 石膏 钙芒硝 BYY1 45 灰色纹层状白云质泥岩 3 124.07 4.45 2.96 2.07 408 29.6 14.5 7.4 5.8 28.8 1.1 8.0 1.1 55 灰色纹层状泥质白云岩 3 124.39 5.72 3.91 2.17 414 19.2 9.2 8.1 16.5 40.2 1.4 2.3 8.4 61 灰黑色纹层状白云质泥岩 3 124.70 3.23 2.86 1.46 416 18.7 9.2 8.3 19.6 34.9 2.1 1.2 1.0 67 灰黑色纹层状白云质泥岩 3 124.88 3.66 2.26 1.28 414 38.6 17.8 7.9 18.6 5.0 1.2 2.4 3.1 143 灰色泥质白云岩 3 127.33 5.54 3.36 1.75 407 18.5 10.2 6.5 12.1 47.6 0.9 0.6 7.5 161 灰色纹层状泥质白云岩 3 127.76 7.79 1.55 1.16 402 13.9 9.4 7.8 16.9 43.1 0.8 4.3 2.5 192 灰黄色含穿层钙芒硝白云岩 3 129.07 5.34 1.22 0.80 398 17.1 9.0 6.5 6.7 25.4 1.8 27.9 2.8 205 灰黄色纹层状白云岩 3 129.56 12.60 1.21 1.40 393 8.0 7.5 8.1 4.0 54.1 1.0 13.3 1.6 220 浅灰色白云岩 3 130.12 3.93 0.69 0.60 403 7.6 12.6 11.4 3.6 56.7 1.2 1.2 13.4 224 灰色细纹层状白云岩 3 130.27 7.60 4.22 1.68 408 34.1 20.3 5.0 5.3 3.7 1.5 24.1 3.8 197 灰色含钙芒硝白云质泥岩 3 129.29 4.43 1.68 1.04 397 31.3 22.2 10.3 11.3 7.0 1.6 5.1 3.8 253 灰白色块状钙芒硝岩 3 131.40 2.92 0.77 0.66 391 27.6 15.3 4.0 3.6 1.9 1.8 37.4 0.7 264 灰黄色块状白云岩 3 131.73 4.75 1.18 0.85 405 13.3 8.7 4.4 2.7 58.1 0.6 1.2 8.2 BYY2 1111 灰黑色纹层状白云质泥岩 3 400.29 10.88 5.22 4.13 428 15.5 8.6 13.7 21.3 29.0 5.1 0.3 1.3 1076 灰黑色纹层状白云质泥岩 3 399.37 2.43 0.69 2.27 400 12.4 6.1 18.5 8.7 35.3 16.7 0.7 6.0 注:S1、S2、TOC及Tmax数据为原始新鲜样品分析结果。 表 2 泥页岩样品不同常温放置时间后S1测试值
Table 2. Rock-Eval S1 value of shale samples after a time-series of storing in normal conditions
放置时间/h S1/(mg·g-1) 样品1111 样品1076 2 10.88 2.43 8 10.54 1.64 32 9.70 1.45 56 9.41 1.27 794 8.20 1.08 1 394 8.16 0.98 表 3 不同样品的S1恢复系数计算结果
Table 3. Calculation results of corrective coefficients of Rock-Eval S1 for different samples
样品号 原始S1含量/(mg·g-1) 缓慢散失阶段S1含量/(mg·g-1) S1损失比例/% S1恢复系数 205 12.6 55 5.72 224 7.60 2.63 65.39 2.89 161 7.79 4.11 47.24 1.90 264 4.75 2.83 40.42 1.68 67 3.66 2.75 24.86 1.33 143 5.54 3.84 30.69 1.44 192 5.34 3.55 33.52 1.50 61 3.23 2.43 24.77 1.33 220 3.93 2.73 30.53 1.44 注:样品205和55由于尚未进入缓慢散失阶段,故本文未计算其恢复系数。 -
[1] 李志明, 陶国亮, 黎茂稳, 等. 鄂尔多斯盆地西南部彬长区块三叠系延长组7段3亚段页岩油勘探前景探讨[J]. 石油与天然气地质, 2019, 40(3): 558-570. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903012.htmLI Zhiming, TAO Guoliang, LI Maowen, et al. Discussion on prospecting potential of shale oil in the 3rd sub-member of the Triassic Chang 7 member in Binchang block, southwestern Ordos Basin[J]. Oil&Gas Geology, 2019, 40(3): 558-570. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903012.htm [2] 宋明水. 济阳坳陷页岩油勘探实践与现状[J]. 油气地质与采收率, 2019, 26(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901001.htmSONG Mingshui. Practice and current status of shale oil exploration in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901001.htm [3] 康玉柱. 中国非常规油气勘探重大进展和资源潜力[J]. 石油科技论坛, 2018, 37(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKT201804001.htmKANG Yuzhu. Significant exploration progress and resource potential of unconventional oil and gas in China[J]. Oil Forum, 2018, 37(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKT201804001.htm [4] 林铁锋, 赵莹, 白云风, 等. 古龙凹陷青山口组页岩油形成地质条件及勘探潜力[C]//2018油气田勘探与开发国际会议(IFEDC 2018)论文集. 西安: 西安华线网络信息服务有限公司, 2018: 767-769.LIN Tiefeng, ZHAO Ying, BAI Yunfeng, et al. Geological conditions and exploration potential for K2qn(Upper Cretaceous Qingshankou Formation) shale oil reservoir in Gulong Sag[C]//Proceedings of International Field Exploration and Development Conference. Xi'an, China: Xi'an Huaxian Network Information Service Co., Ltd., 2018: 767-769. [5] 杨智, 侯连华, 林森虎, 等. 吉木萨尔凹陷芦草沟组致密油、页岩油地质特征与勘探潜力[J]. 中国石油勘探, 2018, 23(4): 76-85. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201804010.htmYANG Zhi, HOU Lianhua, LIN Senhu, et al. Geologic characteristics and exploration potential of tight oil and shale oil in Lucaogou Formation in Jimsar Sag[J]. China Petroleum Exploration, 2018, 23(4): 76-85. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201804010.htm [6] 崔宝文, 蒙启安, 白雪峰, 等. 松辽盆地北部石油勘探进展与建议[J]. 大庆石油地质与开发, 2018, 37(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201803001.htmCUI Baowen, MENG Qi'an, BAI Xuefeng, et al. Petroleum exploration progress and suggestions for north Songliao Basin[J]. Petroleum Geology&Oilfield Development in Daqing, 2018, 37(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201803001.htm [7] 赵贤正, 周立宏, 蒲秀刚, 等. 陆相湖盆页岩层系基本地质特征与页岩油勘探突破: 以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例[J]. 石油勘探与开发, 2018, 45(3): 361-372. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202205010.htmZHAO Xianzheng, ZHOU Lihong, PU Xiugang, et al. Geological characteristics of shale rock system and shale oil exploration in a lacustrine basin: a case study from the Paleogene 1st sub-member of Kong 2 member in Cangdong Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2018, 45(3): 361-372. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202205010.htm [8] 周立宏, 陈长伟, 韩国猛, 等. 渤海湾盆地歧口凹陷沙一下亚段地质特征与页岩油勘探潜力[J]. 地球科学, 2019, 44(8): 2736-2750. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201908019.htmZHOU Lihong, CHEN Changwei, HAN Guomeng, et al. Geolo-gical characteristics and shale oil exploration potential of lower first member of Shahejie Formation in Qikou Sag, Bohai Bay Basin[J]. Earth Science, 2019, 44(8): 2736-2750. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201908019.htm [9] 金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htmJIN Zhijun, BAI Zhenrui, GAO Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil&Gas Geology, 2019, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm [10] 黎茂稳, 马晓潇, 蒋启贵, 等. 北美海相页岩油形成条件、富集特征与启示[J]. 油气地质与采收率, 2019, 26(1): 13-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901002.htmLI Maowen, MA Xiaoxiao, JIANG Qigui, et al. Enlightenment from formation conditions and enrichment characteristics of marine shale oil in North America[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 13-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901002.htm [11] 宁方兴, 王学军, 郝雪峰, 等. 济阳坳陷不同岩相页岩油赋存机理[J]. 石油学报, 2017, 38(2): 185-195. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702006.htmNING Fangxing, WANG Xuejun, HAO Xuefeng, et al. Occurrence mechanism of shale oil with different lithofacies in Jiyang Depression[J]. Acta Petrolei Sinica, 2017, 38(2): 185-195. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702006.htm [12] 柯思. 泌阳凹陷页岩油赋存状态及可动性探讨[J]. 石油地质与工程, 2017, 31(1): 80-83. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201701019.htmKE Si. Discussion on occurrence state and mobility of shale oil in Biyang Depression[J]. Petroleum Geology and Engineering, 2017, 31(1): 80-83. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201701019.htm [13] 陈小慧. 页岩油赋存状态与资源量评价方法研究进展[J]. 科学技术与工程, 2017, 17(3): 136-144. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201703020.htmCHEN Xiaohui. Advances in the research on the occurrence state and resources assessment of shale oil[J]. Science Technology and Engineering, 2017, 17(3): 136-144. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201703020.htm [14] 李吉君, 史颖琳, 黄振凯, 等. 松辽盆地北部陆相泥页岩孔隙特征及其对页岩油赋存的影响[J]. 中国石油大学学报(自然科学版), 2015, 39(4): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201504004.htmLI Jijun, SHI Yinglin, HUANG Zhenkai, et al. Pore characteristics of continental shale and its impact on storage of shale oil in northern Songliao Basin[J]. Journal of China University of Petroleum, 2015, 39(4): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201504004.htm [15] 何晋译, 蔡进功, 雷天柱, 等. 东营凹陷古近系泥页岩中可溶有机质特征与页岩油"甜点"预测[J]. 油气地质与采收率, 2019, 26(1): 174-182. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901018.htmHE Jinyi, CAI Jingong, LEI Tianzhu, et al. Characteristics of soluble organic matter of Paleogene shale in Dongying Sag and prediction of shale oil "sweet spots"[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 174-182. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901018.htm [16] 薛海涛, 田善思, 王伟明, 等. 页岩油资源评价关键参数: 含油率的校正[J]. 石油与天然气地质, 2016, 37(1): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601004.htmXUE Haitao, TIAN Shansi, WANG Weiming, et al. Correction of oil content: one key parameter in shale oil resource assessment[J]. Oil&Gas Geology, 2016, 37(1): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601004.htm [17] 卢双舫, 薛海涛, 王民, 等. 页岩油评价中的若干关键问题及研究趋势[J]. 石油学报, 2016, 37(10): 1309-1322. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201610012.htmLU Shuangfang, XUE Haitao, WANG Min, et al. Several key issues and research trends in evaluation of shale oil[J]. Acta Petrolei Sinica, 2016, 37(10): 1309-1322. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201610012.htm [18] 宁方兴, 王学军, 郝雪峰, 等. 济阳坳陷页岩油甜点评价方法研究[J]. 科学技术与工程, 2015, 15(35): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201535003.htmNING Fangxing, WANG Xuejun, HAO Xuefeng, et al. Evaluation method of shale oil sweetspots in Jiyang Depression[J]. Science Technology and Engineering, 2015, 15(35): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201535003.htm [19] 王敏. 页岩油评价的关键参数及求取方法研究[J]. 沉积学报, 2014, 32(1): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201401020.htmWANG Min. Key parameterand calculation in shale oil reservoir evaluation[J]. Acta Sedimentologica Sinica, 2014, 32(1): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201401020.htm [20] 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htmZOU Caineng, YANG Zhi, CUI Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Deve-lopment, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm [21] 宋国奇, 张林晔, 卢双舫, 等. 页岩油资源评价技术方法及其应用[J]. 地学前缘, 2013, 20(4): 221-228. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304021.htmSONG Guoqi, ZHANG Linye, LU Shuangfang, et al. Resource evaluation method for shale oil and its application[J]. Earth Science Frontiers, 2013, 20(4): 221-228. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304021.htm [22] ENGEL M H, IMBUS S W, ZUMBERGE J E. Organic geochemical correlation of Oklahoma crude oils using R-and Q-mode factor analysis[J]. Organic Geochemistry, 1988, 12(2): 157-170. [23] COOLES G P, MACKENZIE A S, QUIGLEY T M. Calculation of petroleum masses generated and expelled from source rocks[J]. Organic Geochemistry, 1986, 10(1/3): 235-245. [24] HUNT J M, HUC A Y, WHELAN J K. Generation of light hydrocarbons in sedimentary rocks[J]. Nature, 1980, 288(5792): 688-690. [25] 朱日房, 张林晔, 李钜源, 等. 页岩滞留液态烃的定量评价[J]. 石油学报, 2015, 36(1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201501002.htmZHU Rifang, ZHANG Linye, LI Juyuan, et al. Quantitative evaluation of residual liquid hydrocarbons in shale[J]. Acta Petrolei Sinica, 2015, 36(1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201501002.htm [26] 王娟. 轻质烃组分的低温密闭抽提技术及其在页岩油资源评价中的应用[J]. 中国石油勘探, 2015, 20(3): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201503007.htmWANG Juan. Low-temperature closed extraction technology of light hydrocarbons and its application in evaluation of shale oil resource[J]. China Petroleum Exploration, 2015, 20(3): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201503007.htm [27] 李进步, 卢双舫, 陈国辉, 等. 大民屯凹陷E2S42段页岩油资源评价关键参数S1的校正[C]//中国地球科学联合学术年会2014. 北京: 中国地球物理学会, 2014: 2494-2496.LI Jinbu, LU Shuangfang, CHEN Guohui, et al. Correction of key parameters S1 for shale oil resource evaluation in E2S42 section of Damintun Depression[C]//2014 China Earth Science Joint Academic Annual Meeting-Session 57: basin dynamics and unconventional energy. Beijing: Chinese Geophysical Society, 2014: 2494-2496. [28] JARVIE D M. Shale resource systems for oil and gas: part 2: shale-oil resource systems[M]//BREYER J A. Shale reservoirs-giant resources for the 21st century. Tulsa: AAPG, 2012: 89-119. [29] CHEN Junqing, PANG Xiongqi, PANG Hong, et al. Hydrocarbon evaporative loss evaluation of lacustrine shale oil based on mass balance method: Permian Lucaogou Formation in Jimusaer Depression, Junggar Basin[J]. Marine and Petroleum Geology, 2018, 91: 422-431. [30] JIANG Chunqing, CHEN Zhuoheng, MORT A, et al. Hydrocarbon evaporative loss from shale core samples as revealed by Rock-Eval and thermal desorption-gas chromatography analysis: its geoche-mical and geological implications[J]. Marine and Petroleum Geology, 2016, 70: 294-303. [31] CHEN Zhuoheng, JIANG Chunqing. A data driven model for studying kerogen kinetics with application examples from Canadian sedimentary basins[J]. Marine and Petroleum Geology, 2015, 67: 795-803. [32] 郎东升, 郭树生, 马德华. 评价储层含油性的热解参数校正方法及其应用[J]. 海相油气地质, 1996, 1(1): 53-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ199604011.htmLANG Dongsheng, GUO Shusheng, MA Dehua. The correlation method of pyrolysis parameters to evaluated hydrocarbon-bearing samples from reservoirs[J]. Marin Origin Petroleum Geology, 1996, 1(1): 53-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ199604011.htm [33] 李玉恒, 邬立言, 黄九思. 储油岩热解地球化学录井评价技术[M]. 北京: 石油工业出版社, 1993: 165-171.LI Yuheng, WU Liyan, HUANG Jiusi. Oil storage rock pyrolysis geochemical logging evaluation technology[M]. Beijing: Petroleum Industry Press, 1993: 165-171. [34] 吴欣松, 韩德馨, 昝新, 等. 岩屑热解参数恢复的新方法[J]. 石油学报, 2004, 25(4): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200404011.htmWU Xinsong, HAN Dexin, ZAN Xin, et al. Critical point analysis method for recovering pyrolysis parameters of rock cuttings[J]. Acta Petrolei Sinica, 2004, 25(4): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200404011.htm [35] 郭树生, 郎东升. 热解参数S1的校正方法[J]. 录井技术, 1997, 8(1): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGZ199701008.htmGUO Shusheng, LANG Dongsheng. Correction method of pyrolysis parameter S1[J]. Logging Technology, 1997, 8(1): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGZ199701008.htm [36] 潘志清, 梅博文, 苏秀方, 等. 储层含油性热解评价方法[J]. 石油与天然气地质, 1996, 17(4): 353-355. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT604.016.htmPAN Zhiqing, MEI Bowen, SU Xiufang, et al. Thermolysis assessment method for reservoir oil potential[J]. Oil&Gas Geology, 1996, 17(4): 353-355. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT604.016.htm [37] 蒋启贵, 黎茂稳, 钱门辉, 等. 页岩油探井现场地质评价实验流程与技术进展[J]. 石油与天然气地质, 2019, 40(3): 571-582. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903013.htmJIANG Qigui, LI Maowen, QIAN Menhui, et al. Experimental procedures of well-site geological evaluation for shale oil and related technological progress[J]. Oil&Gas Geology, 2019, 40(3): 571-582. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903013.htm [38] 蒋启贵, 黎茂稳, 马媛媛, 等. 页岩油可动性分子地球化学评价方法: 以济阳坳陷页岩油为例[J]. 石油实验地质, 2018, 40(6): 849-854. doi: 10.11781/sysydz201806849JIANG Qigui, LI Maowen, MA Yuanyuan, et al. Molecular geochemical evaluation of shale oil mobility: a case study of shale oil in Jiyang Depression[J]. Petroleum Geology&Experiment, 2018, 40(6): 849-854. doi: 10.11781/sysydz201806849 [39] OKAMOTO K, WATANABE N, HAGIMOTO Y, et al. Evaporation characteristics of multi-component liquid[J]. Journal of Loss Prevention in the Process Industries, 2010, 23(1): 89-97. [40] MACKAY D, MATSUGU R S. Evaporation rates of liquid hydrocarbon spills on land and water[J]. The Canadian Journal of Chemical Engineering, 1973, 51(4): 434-439. [41] NOBLE R A, KALDI J G, ATKINSON C D. Oil saturation in shales: applications in seal evaluation[M]//SURDAM R C. Seals, traps, and the petroleum system. Tulsa, Oklahoma: AAPG, 1997: 13-29. [42] KATZ B, LIN Fang. Lacustrine basin unconventional resource plays: key differences[J]. Marine and Petroleum Geology, 2014, 56: 255-265. [43] 李志明, 芮晓庆, 黎茂稳, 等. 北美典型混合页岩油系统特征及其启示[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1060-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201504010.htmLI Zhiming, RUI Xiaoqing, LI Maowen, et al. Characteristics of typical hybrid shale-oil system in North America and its implications[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(4): 1060-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201504010.htm [44] ALMANZA A. Integrated three dimensional geological model of the Devonian Bakken Formation Elm Coulee Field, Williston Basin[D]. Richland county Montana: Colorado School of Mines, 2011.