留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物降解稠油极性化合物负离子电喷雾傅立叶变换离子回旋共振质谱分析

李二庭 史权 马聪 雷海艳 吴建勋 迪丽达尔·肉孜 高秀伟 王明

李二庭, 史权, 马聪, 雷海艳, 吴建勋, 迪丽达尔·肉孜, 高秀伟, 王明. 生物降解稠油极性化合物负离子电喷雾傅立叶变换离子回旋共振质谱分析[J]. 石油实验地质, 2022, 44(3): 515-521. doi: 10.11781/sysydz202203515
引用本文: 李二庭, 史权, 马聪, 雷海艳, 吴建勋, 迪丽达尔·肉孜, 高秀伟, 王明. 生物降解稠油极性化合物负离子电喷雾傅立叶变换离子回旋共振质谱分析[J]. 石油实验地质, 2022, 44(3): 515-521. doi: 10.11781/sysydz202203515
LI Erting, SHI Quan, MA Cong, LEI Haiyan, WU Jianxun, ROUZI Dilidaer, GAO Xiuwei, WANG Ming. Analysis of polar compounds in biodegraded heavy oil by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(3): 515-521. doi: 10.11781/sysydz202203515
Citation: LI Erting, SHI Quan, MA Cong, LEI Haiyan, WU Jianxun, ROUZI Dilidaer, GAO Xiuwei, WANG Ming. Analysis of polar compounds in biodegraded heavy oil by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(3): 515-521. doi: 10.11781/sysydz202203515

生物降解稠油极性化合物负离子电喷雾傅立叶变换离子回旋共振质谱分析

doi: 10.11781/sysydz202203515
基金项目: 

国家油气重大专项 2016ZX05041-005-003

详细信息
    作者简介:

    李二庭(1988-), 男, 博士, 高级工程师, 从事油气地球化学研究工作。E-mail: lierting@petrochina.com.cn

  • 中图分类号: TE135

Analysis of polar compounds in biodegraded heavy oil by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry

  • 摘要: 为研究生物降解对原油中极性化合物组成影响,采用傅立叶变换离子回旋共振质谱分析技术,研究了准噶尔盆地三台—北三台地区生物降解稠油中极性大分子化合物的组成。结果显示,生物降解稠油中含杂原子化合物类型较为复杂,主要有N1、N1O1、N1O2、O1、O1S1、O2、O2S1、O3、O3S1和O4;不同生物降解程度稠油中极性化合物组成具有明显差异,随着生物降解作用加剧,稠油中O2类化合物相对丰度明显升高,N1、O1S1、O2S1、O3、O3S1和O4类化合物呈现逐渐降低的变化规律。通过对极性化合物中相对丰度较高的N1和O2类化合物的分析发现,随着生物降解程度增大,N1和O2类极性化合物缩合度整体增高,指示高缩合度的极性化合物抗生物降解能力更强,更易富集,长烷基支链取代化合物更易被生物降解。在严重生物降解稠油中,O2类极性化合物相对丰度最高,其中酸性组分以一环至四环环烷酸(分子缩合度DBE为2~5)为主。傅立叶变换离子回旋共振质谱分析技术具有超高质量分辨分析能力,可以从分子层次研究原油中极性大分子化合物的化学组成,为石油地球化学研究提供了新的技术手段。

     

  • 图  1  准噶尔盆地三台—北三台地区稠油色谱图

    Figure  1.  Chromatogram of heavy oil in Santai-Beisantai area, Junggar Basin

    图  2  准噶尔盆地三台—北三台地区稠油负离子ESI FT-ICR MS质谱图

    Figure  2.  Negative ion ESI FT-ICR MS mass spectrum of heavy oil in Santai-Beisantai area, Junggar Basin

    图  3  准噶尔盆地三台—北三台地区稠油极性化合物类型分布

    不同颜色表示不同的分子缩合度(DBE)。

    Figure  3.  Distribution of polar compound types of heavy oil in Santai-Beisantai area, Junggar Basin

    图  4  准噶尔盆地三台—北三台地区稠油中N1类化合物的DBE—碳数分布

    Figure  4.  DBE versus carbon number of N1 class species in heavy oil of Santai-Beisantai area, Junggar Basin

    图  5  准噶尔盆地三台—北三台地区稠油中不同DBE的N1类化合物相对丰度

    Figure  5.  Relative abundance of N1 compounds with different DBE in heavy oil of Santai-Beisantai area, Junggar Basin

    图  6  准噶尔盆地三台—北三台地区稠油中O2类化合物的DBE—碳数分布

    Figure  6.  DBE versus carbon number of O2 class species in heavy oil of Santai-Beisantai area, Junggar Basin

    图  7  准噶尔盆地三台—北三台地区稠油中不同DBE的O2类化合物相对丰度

    Figure  7.  Relative abundance of O2 compounds with different DBE in heavy oil of Santai-Beisantai area, Junggar Basin

    表  1  准噶尔盆地三台—北三台地区稠油地球化学特征

    Table  1.   Geochemical characteristics of heavy oil in Santai-Beisantai area, Junggar Basin

    样品号 密度/(g·cm -3) 黏度(50 ℃)/(mPa·s) 饱和烃/% 芳烃/% 非烃/% 沥青质/% 降解级别
    T1 0.887 1 79.32 73.94 12.42 13.34 0.30 1
    T2 0.920 3 420.40 62.84 18.74 13.21 5.21 3
    T3 0.943 3 2 100.00 57.31 20.39 17.39 4.91 5
    T4 0.966 8 10 175.00 56.29 15.41 23.27 5.03 7
    下载: 导出CSV
  • [1] HEAD I M, JONES D M, LARTER S R. Biological activity in the deep subsurface and the origin of heavy oil[J]. Nature, 2003, 426(6964): 344-352. doi: 10.1038/nature02134
    [2] 杨禄, 李美俊, 张春明. 生物降解作用对大宛齐油田库车组原油轻烃参数的影响[J]. 高校地质学报, 2016, 22(3): 549-554. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201603016.htm

    YANG Lu, LI Meijun, ZHANG Chunming. Influence of biodegradation on light hydrocarbon parameters in crude oil of Kuqa Formation from Dawanqi oilfield[J]. Geological Journal of China Universities, 2016, 22(3): 549-554. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201603016.htm
    [3] 潘银华, 廖玉宏, 彭先芝. 辽河原油好氧生物降解模拟过程中化学组成及其碳同位素值的变化[J]. 地球化学, 2015, 44(6): 581-589. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201506007.htm

    PAN Yinhua, LIAO Yuhong, PENG Xianzhi. Variations in chemical and stable carbon isotopic compositions of Liaohe crude oil during aerobic biodegradation simulation[J]. Geochimica, 2015, 44(6): 581-589. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201506007.htm
    [4] LARTER S, WILHELMS A, HEAD I, et al. The controls on the composition of biodegraded oils in the deep subsurface-part 1: biodegradation rates in petroleum reservoirs[J]. Organic Geochemistry, 2003, 34(4): 601-613. doi: 10.1016/S0146-6380(02)00240-1
    [5] 段传丽, 陈践发. 生物降解原油的地球化学特征及其意义[J]. 天然气地球科学, 2007, 18(2): 278-283. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200702022.htm

    DUAN Chuanli, CHEN Jianfa. Geochemical characteristics of biodegraded crude oil and their significances[J]. Natural Gas Geoscience, 2007, 18(2): 278-283. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200702022.htm
    [6] 李二庭, 陈俊, 于双, 等. 生物降解稠油中沥青质热模拟实验[J]. 新疆石油地质, 2017, 38(5): 580-585. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201705013.htm

    LI Erting, CHEN Jun, YU Shuang, et al. Thermal simulation experiment on asphaltene in biodegraded heavy oil[J]. Xinjiang Petroleum Geology, 2017, 38(5): 580-585. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201705013.htm
    [7] 李二庭, 靳军, 陈俊, 等. 生物降解稠油沥青质热解产物中生物标志化合物与单体烃碳同位素组成研究[J]. 地球化学, 2019, 48(3): 284-292. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201903006.htm

    LI Erting, JIN Jun, CHEN Jun, et al. Study on biomarkers and carbon isotopic compositions of monomer hydrocarbons in asphaltene pyrolysis products from biodegraded heavy oil[J]. Geochimica, 2019, 48(3): 284-292. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201903006.htm
    [8] 路俊刚, 王力, 陈世加, 等. 准噶尔盆地三台油气田原油菌解气特征及成因[J]. 石油勘探与开发, 2015, 42(4): 425-433. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201504004.htm

    LU Jungang, WANG Li, CHEN Shijia, et al. Features and origin of oil degraded gas of Santai field in Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(4): 425-433. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201504004.htm
    [9] 赵睿, 邹正银, 孙新革, 等. 准噶尔盆地稠油油藏产能预测新方法[J]. 新疆石油地质, 2008, 29(2): 244-246. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200802038.htm

    ZHAO Rui, ZOU Zhengyin, SUN Xin'ge, et al. New method for productivity prediction of heavy oil reservoir in Junggar Basin[J]. Xinjiang Petroleum Geology, 2008, 29(2): 244-246. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200802038.htm
    [10] VENTURA G T, KENIG F, REDDY C M, et al. Analysis of unresolved complex mixtures of hydrocarbons extracted from Late Archean sediments by comprehensive two-dimensional gas chromatography (GC×GC)[J]. Organic Geochemistry, 2008, 39(7): 846-867.
    [11] 王汇彤, 张水昌, 翁娜, 等. 稠油中饱和烃复杂混合物成分解析及其意义[J]. 中国科学: 化学, 2012, 42(10): 1469-1478. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK201210009.htm

    WANG Huitong, ZHANG Shuichang, WENG Na, et al. Insight of unresolved complex mixtures of saturated hydrocarbons in heavy oil via GC×GC/TOFMS analysis[J]. Science China Chemistry, 2013, 56(2): 262-270. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK201210009.htm
    [12] WENG Na, WAN Shan, WANG Huitong, et al. Insight into unresolved complex mixtures of aromatic hydrocarbons in heavy oil via two-dimensional gas chromatography coupled with time-of-flight mass spectrometry analysis[J]. Journal of Chromatography A, 2015, 1398: 94-107.
    [13] 李二庭, 王汇彤, 王剑, 等. 准噶尔盆地乌夏地区生物降解原油中饱和烃组成解析[J]. 天然气地球科学, 2020, 31(4): 462-470. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202004002.htm

    LI Erting, WANG Huitong, WANG Jian, et al. Study on composition of saturated hydrocarbon complex mixtures in biodegraded crude oil from Wuxia area, Junggar Basin[J]. Natural Gas Geoscience, 2020, 31(4): 462-470. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202004002.htm
    [14] 牛君, 黄海平, 蒋文龙, 等. 乐安油田多期充注及生物降解作用对稠油黏度的影响分析[J]. 地球化学, 2016, 45(5): 441-450. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201605001.htm

    NIU Jun, HUANG Haiping, JIANG Wenlong, et al. Factors such as multi-stage charge mixing and biodegradation affecting the viscosity of heavy oil in the Le'an oilfield[J]. Geochimica, 2016, 45(5): 441-450. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201605001.htm
    [15] 梁建军, 陈龙, 潘竟军, 等. 新疆油田红浅火驱试验区原油物性变化规律研究[J]. 科学技术与工程, 2015, 15(31): 179-183. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201531033.htm

    LIANG Jianjun, CHEN Long, PAN Jingjun, et al. Research crude oil variable rule by fire flooding in Xinjiang Hongqian oilfield[J]. Science Technology and Engineering, 2015, 15(31): 179-183. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201531033.htm
    [16] 马安来, 张水昌, 张大江, 等. 生物降解原油地球化学研究新进展[J]. 地球科学进展, 2005, 20(4): 449-454. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200504009.htm

    MA Anlai, ZHANG Shuichang, ZHANG Dajiang, et al. The advances in the geochemistry of the biodegraded oil[J]. Advances in Earth Science, 2005, 20(4): 449-454. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200504009.htm
    [17] MARSHALL A G, HENDRICKSON C L, JACKSON G S. Fourier transform ion cyclotron resonance mass spectrometry: a primer[J]. Mass Spectrometry Reviews, 1998, 17(1): 1-35.
    [18] 史权, 赵锁奇, 徐春明, 等. 傅立叶变换离子回旋共振质谱仪在石油组成分析中的应用[J]. 质谱学报, 2008, 29(6): 367-378. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB200806011.htm

    SHI Quan, ZHAO Suoqi, XU Chunming, et al. Fourier transform ion cyclotron resonance mass spectrometry and its application in petroleum analysis[J]. Journal of Chinese Mass Spectrometry Society, 2008, 29(6): 367-378. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB200806011.htm
    [19] HUGHEY C A, RODGERS R P, MARSHALL A G, et al. Acidic and neutral polar NSO compounds in Smackover oils of different thermal maturity revealed by electrospray high field Fourier transform ion cyclotron resonance mass spectrometry[J]. Organic Geochemistry, 2004, 35(7): 863-880.
    [20] KIM S, STANFORD L A, RODGERS R P, et al. Microbial alteration of the acidic and neutral polar NSO compounds revealed by Fourier transform ion cyclotron resonance mass spectrometry[J]. Organic Geochemistry, 2005, 36(8): 1117-1134.
    [21] 刘鹏, 陶国亮, 黎茂稳, 等. 渤海湾盆地济阳坳陷樊页1井页岩油与临近页岩中含氮化合物组成特征[J]. 石油实验地质, 2020, 42(4): 552-557. doi: 10.11781/sysydz202004552

    LIU Peng, TAO Guoliang, LI Maowen, et al. Characteristics of nitrogen-containing compounds in shale oil and adjacent shales in well FY 1, Jiyang Depression, Bohai Bay Basin[J]. Petroleum Geology and Experiment, 2020, 42(4): 552-557. doi: 10.11781/sysydz202004552
    [22] 卢鸿, 史权, 马庆林, 等. 傅里叶变换离子回旋共振质谱对中国高硫原油的分子组成表征[J]. 中国科学: 地球科学, 2014, 44(1): 122-131. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201401013.htm

    LU Hong, SHI Quan, MA Qinglin, et al. Molecular characterization of sulfur compounds in some specieal sulfur-rich Chinese crude oils by FT-ICR MS[J]. Science China Earth Sciences, 2014, 57(6): 1158-1167. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201401013.htm
    [23] 李二庭, 靳军, 陈亮, 等. 准噶尔盆地南缘井筒堵塞物中沥青质分子组成研究[J]. 石油实验地质, 2022, 44(2): 306-313. doi: 10.11781/sysydz202202306

    LI Erting, JIN Jun, CHEN Liang, et al. Molecular composition of asphaltene in wellbore blockage on the southern margin of Junggar Basin[J]. Petroleum Geology&Experiment, 2022, 44(2): 306-313. doi: 10.11781/sysydz202202306
    [24] 华朝, 张健, 李浩, 等. 渤海稠油及其组分中杂原子化合物的负离子电喷雾-高分辨质谱分析[J]. 分析测试学报, 2017, 36(6): 725-731. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201706005.htm

    HUA Chao, ZHANG Jian, LI Hao, et al. Anlysis of heteroatomic compounds in Bohai heavy oil and its fractions by high resolution FT-ICR mass spectrometry with negative ion electrospray[J]. Journal of Instrumental Analysis, 2017, 36(6): 725-731. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201706005.htm
    [25] LI Shengke, PENG Bo, LIU Dan, et al. Resolution and identification of petroleum sulfonate by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy&Fuels, 2016, 30(4): 2751-2759.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  456
  • HTML全文浏览量:  156
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-15
  • 修回日期:  2022-03-30
  • 刊出日期:  2022-05-28

目录

    /

    返回文章
    返回