留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“存滞系数”法在页岩气资源评价中的应用——以川东南上奥陶统五峰组—下志留统龙马溪组页岩气为例

宋振响 王保华 魏祥峰 马中良

宋振响, 王保华, 魏祥峰, 马中良. “存滞系数”法在页岩气资源评价中的应用——以川东南上奥陶统五峰组—下志留统龙马溪组页岩气为例[J]. 石油实验地质, 2022, 44(3): 535-544. doi: 10.11781/sysydz202203535
引用本文: 宋振响, 王保华, 魏祥峰, 马中良. “存滞系数”法在页岩气资源评价中的应用——以川东南上奥陶统五峰组—下志留统龙马溪组页岩气为例[J]. 石油实验地质, 2022, 44(3): 535-544. doi: 10.11781/sysydz202203535
SONG Zhenxiang, WANG Baohua, WEI Xiangfeng, MA Zhongliang. Application of 'retention coefficiency' method in shale gas resource evaluation: a case study of Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation, southeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(3): 535-544. doi: 10.11781/sysydz202203535
Citation: SONG Zhenxiang, WANG Baohua, WEI Xiangfeng, MA Zhongliang. Application of "retention coefficiency" method in shale gas resource evaluation: a case study of Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation, southeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(3): 535-544. doi: 10.11781/sysydz202203535

“存滞系数”法在页岩气资源评价中的应用——以川东南上奥陶统五峰组—下志留统龙马溪组页岩气为例

doi: 10.11781/sysydz202203535
基金项目: 

国家自然科学基金 42072156

国家科技重大专项 2017ZX05036-001

详细信息
    作者简介:

    宋振响(1983-), 男, 高级工程师, 从事油气成烃成藏与非常规油气地质研究工作。E-mail: songzx.syky@sinopec.com

  • 中图分类号: TE132.2

Application of "retention coefficiency" method in shale gas resource evaluation: a case study of Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation, southeastern Sichuan Basin

  • 摘要: 资源评价除提供结果数据外,更重要的是要对有利区优选和勘探部署提供依据。针对传统页岩气资评方法存在的不足,结合地层孔隙热压模拟实验和最新盆地模拟技术,提出了采用“存滞系数”法开展页岩气资源评价的流程,并指出泥页岩生—排—滞留烃演化模式和页岩气“存滞系数”是两项最关键的参数。以目前我国页岩气勘探开发程度最高的川东南上奥陶统五峰组—下志留统龙马溪组泥页岩为例,详细阐述了新方法的应用过程,结果显示“存滞系数”法具有较好的适用性和可行性。与传统方法相比,“存滞系数”法既考虑到页岩气的动态演化过程,又考虑到晚期保存条件对页岩气富集的影响,并能刻画页岩气资源的空间展布特征,在页岩气资源评价和有利区优选方面具有广阔的应用前景。

     

  • 图  1  基于页岩气“存滞系数”的盆地模拟法资评流程

    Figure  1.  Basin simulation and resource evaluation process based on shale gas "retention coefficient"

    图  2  海相不同类型泥页岩有机碳含量恢复系数

    Figure  2.  Recovery coefficient of organic carbon content in different types of marine shale

    图  3  海相不同类型泥页岩源内气产率

    Figure  3.  In-source gas production rates in different types of marine shale

    图  4  川东南上奥陶统五峰组—下志留统龙马溪组泥页岩源内生气强度

    Figure  4.  In-source gas intensity of shale in Upper Ordovician Wufeng to Lower Silurian Longmaxi formations in southeastern Sichuan Basin

    图  5  川东南上奥陶统五峰组—下志留统龙马溪组页岩气“存滞系数”分布

    Figure  5.  Distribution of shale gas "retention coefficiency" of Upper Ordovician Wufeng to Lower Silurian Longmaxi formations in southeastern Sichuan Basin

    图  6  川东南上奥陶统五峰组—下志留统龙马溪组页岩气资源丰度平面分布

    Figure  6.  Distribution of shale gas resource abundance of Upper Ordovician Wufeng to Lower Silurian Longmaxi formations in southeastern Sichuan Basin

    图  7  川东南重点探区上奥陶统五峰组—下志留统龙马溪组页岩气资评结果对比

    Figure  7.  Comparison of evaluation results of shale gas resource of Upper Ordovician Wufeng to Lower Silurian Longmaxi formations from key exploration areas in southeastern Sichuan Basin

    表  1  川东南地区盆地模拟地层格架及剥蚀信息

    Table  1.   Stratigraphic framework and denudation information of southeastern Sichuan Basin

    地层 地层底界年龄/Ma 剥蚀事件 剥蚀开始时间/Ma 剥蚀结束时间/Ma 残留地层底界年龄/Ma
    Q 2.5
    K 144 144 2.5 204
    T3-J 232 160 144 198
    T2 242 230 227 232
    T1 250
    P2 268
    P1 295
    C 355
    D 420
    S 440 420 416 425
    O 480
    -C2-3 520
    -C1 540
    下载: 导出CSV

    表  2  涪陵探区总生气量、源内生气量及探明储量

    Table  2.   Total gas production, in-source gas production and proved reserves in Fuling exploration area, Sichuan Basin

    矿权区/探明储量区 总生气量/108 m3 源内生气量/108 m3 探明储量/108m3 存滞系数/%
    焦石坝主体 29 699.96 12 931.98 4 618.97 35.72
    平桥 10 188.15 4 411.47 1 389.17 31.49
    下载: 导出CSV
  • [1] 宋振响, 邱岐, 赵琳洁, 等. 基于存滞系数的页岩气资源评价方法[J]. 天然气工业, 2020, 40(10): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202010003.htm

    SONG Zhenxiang, QIU Qi, ZHAO Linjie, et al. A shale gas resource evaluation method based on retention coefficient[J]. Natural Gas Industry, 2020, 40(10): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202010003.htm
    [2] 郭秋麟, 陈宁生, 柳庄小雪, 等. 盆地模拟关键技术之油气运聚模拟技术进展[J]. 石油实验地质, 2020, 42(5): 846-857. doi: 10.11781/sysydz202005846

    GUO Qiulin, CHEN Ningsheng, LIU Zhuangxiaoxue, et al. Advance of basin modeling key techniques: hydrocarbon migration and accumulation simulation[J]. Petroleum Geology&Experiment, 2020, 42(5): 846-857. doi: 10.11781/sysydz202005846
    [3] 刘可禹, 刘建良. 盆地和含油气系统模拟(BPSM)研究现状及发展趋势[J]. 石油科学通报, 2017, 2(2): 161-175. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201702001.htm

    LIU Keyu, LIU Jianliang. Current status and future development trends of Basin and Petroleum System Modeling (BPSM)[J]. Petroleum Science Bulletin, 2017, 2(2): 161-175. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201702001.htm
    [4] 宋振响, 陆建林, 周卓明, 等. 常规油气资源评价方法研究进展与发展方向[J]. 中国石油勘探, 2017, 22(3): 21-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201703003.htm

    SONG Zhenxiang, LU Jianlin, ZHOU Zhuoming, et al. Research progress and future development of assessment methods for conventional hydrocarbon resources[J]. China Petroleum Exploration, 2017, 22(3): 21-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201703003.htm
    [5] 何川, 郑伦举, 王强, 等. 烃源岩生排烃模拟实验技术现状、应用与发展方向[J]. 石油实验地质, 2021, 43(5): 862-870. doi: 10.11781/sysydz202105862

    HE Chuan, ZHENG Lunju, WANG Qiang, et al. Experimental deve-lopment and application of source rock thermal simulation for hydrocarbon generation and expulsion[J]. Petroleum Geology&Experiment, 2021, 43(5): 862-870. doi: 10.11781/sysydz202105862
    [6] 徐旭辉, 申宝剑, 李志明, 等. 页岩气实验地质评价技术研究现状及展望[J]. 油气藏评价与开发, 2020, 10(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202001002.htm

    XU Xuhui, SHEN Baojian, LI Zhiming, et al. Status and prospect of experimental technologies of geological evaluation for shale gas[J]. Reservoir Evaluation and Development, 2020, 10(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202001002.htm
    [7] 徐旭辉, 方成名, 陆建林, 等. 原型控源、迭加控藏: 油气盆地资源分级评价与有利勘探方向优选思维及技术[J]. 石油实验地质, 2020, 42(5): 824-836. doi: 10.11781/sysydz202005824

    XU Xuhui, FANG Chengming, LU Jianlin, et al. Hydrocarbon sources controlled by basin prototype and petroleum accumulation controlled by basin superposition: thoughts and technology of resource grading evaluation and exploration optimization in petroliferous basins[J]. Petroleum Geology&Experiment, 2020, 42(5): 824-836. doi: 10.11781/sysydz202005824
    [8] 徐旭辉, 朱建辉, 江兴歌, 等. TSM盆地模拟原理方法与应用[J]. 石油实验地质, 2017, 39(6): 729-737. doi: 10.11781/sysydz201706729

    XU Xuhui, ZHU Jianhui, JIANG Xingge, et al. Principle of TSM basin simulation system and its application[J]. Petroleum Geology&Experiment, 2017, 39(6): 729-737. doi: 10.11781/sysydz201706729
    [9] 周雨双, 贾存善, 张奎华, 等. 应用TSM盆地模拟技术恢复准噶尔盆地东北缘石炭系烃源岩热演化史[J]. 石油实验地质, 2021, 43(2): 297-306. doi: 10.11781/sysydz202102297

    ZHOU Yushuang, JIA Cunshan, ZHANG Kuihua, et al. Thermal evolution history reconstruction of Carboniferous source rocks on the northeastern margin of Junggar Basin using TSM basin simulation technology[J]. Petroleum Geology&Experiment, 2021, 43(2): 297-306. doi: 10.11781/sysydz202102297
    [10] 黄振凯, 黎茂稳, 郑伦举, 等. 湖相烃源岩演化全过程中的孔隙演化机理: 基于地质样品与模拟实验的认识[J]. 石油实验地质, 2020, 42(4): 639-645. doi: 10.11781/sysydz202004639

    HUANG Zhenkai, LI Maowen, ZHENG Lunju, et al. Pore deve-lopment in lacustrine source rock evolution: interpretation based on geological samples and simulation experiments[J]. Petroleum Geology&Experiment, 2020, 42(4): 639-645. doi: 10.11781/sysydz202004639
    [11] 李楚雄, 申宝剑, 潘安阳, 等. 波罗的海盆地上奥陶统页岩孔隙演化的热压模拟实验[J]. 石油实验地质, 2020, 42(3): 434-442. doi: 10.11781/sysydz202003434

    LI Chuxiong, SHEN Baojian, PAN Anyang, et al. Thermal-pressure simulation experiment of pore evolution of Upper Ordovician shale in Baltic Basin[J]. Petroleum Geology&Experiment, 2020, 42(3): 434-442. doi: 10.11781/sysydz202003434
    [12] 邹雨, 王国建, 卢丽, 等. 纳米孔隙中页岩气扩散模拟实验和数学模型分析[J]. 石油实验地质, 2021, 43(5): 844-854. doi: 10.11781/sysydz202105844

    ZOU Yu, WANG Guojian, LU Li, et al. Simulation experiment and mathematical model analysis for shale gas diffusion in nano-scale pores[J]. Petroleum Geology&Experiment, 2021, 43(5): 844-854. doi: 10.11781/sysydz202105844
    [13] 郭旭升, 李宇平, 腾格尔, 等. 四川盆地五峰组-龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020, 47(1): 193-201. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htm

    GUO Xusheng, LI Yuping, BORJIGEN Tenger, et al. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan Basin, China[J]. Petroleum Exploration and Development, 2020, 47(1): 193-201. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htm
    [14] 龙祖烈, 石创, 朱俊章, 等. 珠江口盆地白云凹陷原油半开放条件下裂解成气模拟实验[J]. 石油实验地质, 2021, 43(3): 507-512. doi: 10.11781/sysydz202103507

    LONG Zulie, SHI Chuang, ZHU Junzhang, et al. Simulation of crude oil cracking and gas generation with semi-open condition, Baiyun Sag, Pearl River Mouth Basin[J]. Petroleum Geology&Experiment, 2021, 43(3): 507-512. doi: 10.11781/sysydz202103507
    [15] 何大祥, 唐友军, 郑彬, 等. 生排烃热模拟中页岩生物标志化合物的变化及其地质意义[J]. 断块油气田, 2020, 27(6): 689-694. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202006004.htm

    HE Daxiang, TANG Youjun, ZHENG Bin, et al. Changes of shale biomarkers in thermal simulation of hydrocarbon generation and expulsion and its geological significance[J]. Fault-Block Oil and Gas Field, 2020, 27(6): 689-694. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202006004.htm
    [16] 陈璐, 胡志明, 熊伟, 等. 基于动量方程的页岩气体扩散能力表征模型与实验研究[J]. 特种油气藏, 2020, 27(5): 132-138. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202005020.htm

    CHEN Lu, HU Zhiming, XIONG Wei, et al. Characte-rization model and experimental study of shale gas diffusion capacity based on momentum equation[J]. Special oil&Gas Reservoirs, 2020, 27(5): 132-138. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202005020.htm
    [17] 蔡勋育, 赵培荣, 高波, 等. 中国石化页岩气"十三五"发展成果与展望[J]. 石油与天然气地质, 2021, 42(1): 16-27. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101003.htm

    CAI Xunyu, ZHAO Peirong, GAO Bo, et al. SINOPEC's shale gas development achievements during the"Thirteenth Five-Year Plan"period and outlook for the future[J]. Oil&Gas Geology, 2021, 42(1): 16-27. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101003.htm
    [18] 杨跃明, 陈玉龙, 刘燊阳, 等. 四川盆地及其周缘页岩气勘探开发现状、潜力与展望[J]. 天然气工业, 2021, 41(1): 42-58. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101006.htm

    YANG Yueming, CHEN Yulong, LIU Shenyang, et al. Status, potential and prospect of shale gas exploration and development in the Sichuan Basin and its periphery[J]. Natural Gas Industry, 2021, 41(1): 42-58. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101006.htm
    [19] 龙胜祥, 冯动军, 李凤霞, 等. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201804001.htm

    LONG Shengxiang, FENG Dongjun J, LI Fengxia, et al. Prospect of the deep marine shale gas exploration and development in the Sichuan Basin[J]. Natural Gas Geoscience, 2018, 29(4): 443-451. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201804001.htm
    [20] 饶松, 胡迪, 胡圣标, 等. 叠合盆地深层构造-热演化研究方法: 以四川盆地为例[J]. 地质科学, 2019, 54(1): 159-175. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHS202206011.htm

    RAO Song, HU Di, HU Shengbiao, et al. Tectono-thermal reconstruction methods for deep zone in superimposed basins: a case study from Sichuan Basin[J]. Chinese Journal of Geology, 2019, 54(1): 159-175. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHS202206011.htm
    [21] 李春荣, 饶松, 胡圣标, 等. 川东南焦石坝页岩气区现今地温场特征[J]. 地球物理学报, 2017, 60(2): 617-627. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201702016.htm

    LI Chunrong, RAO Song, HU Shengbiao, et al. Present-day geothermal field of the Jiaoshiba shale gas area in southeast of the Sichuan Basin, SW China[J]. Chinese Journal of Geophysics, 2017, 60(2): 617-627. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201702016.htm
    [22] 石广仁. 计算烃类成熟度史的实地TTI-Ro法[J]. 石油勘探与开发, 2001, 28(4): 50-52.

    SHI Guangren. A practical TTI-Ro method for hydrocarbon maturity history reconstruction[J]. Petroleum Exploration and Development, 2001, 28(4): 50-52.
    [23] 王晔, 邱楠生, 仰云峰, 等. 四川盆地五峰-龙马溪组页岩成熟度研究[J]. 地球科学, 2019, 44(3): 953-971. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903022.htm

    WANG Ye, QIU Nansheng, YANG Yunfeng, et al. Thermal maturity of Wufeng-Longmaxi shale in Sichuan Basin[J]. Earth Science, 2019, 44(3): 953-971. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903022.htm
    [24] 冯动军, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气成藏条件分析[J]. 地质论评, 2016, 62(6): 1521-1532. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201606014.htm

    FENG Dongjun, HU Zongquan, GAO Bo, et al. Analysis of shale gas reservoir-forming condition of Wufeng Formation-Longmaxi Formation in southeast Sichuan Basin[J]. Geological Review, 2016, 62(6): 1521-1532. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201606014.htm
    [25] 秦建中, 申宝剑, 腾格尔, 等. 不同类型优质烃源岩生排油气模式[J]. 石油实验地质, 2013, 35(2): 179-186. doi: 10.11781/sysydz201302179

    QIN Jianzhong, SHEN Baojian, BORJIGEN Tenger, et al. Hydrocarbon generation and expulsion pattern of different types of excellent source rocks[J]. Petroleum Geology&Experiment, 2013, 35(2): 179-186. doi: 10.11781/sysydz201302179
    [26] 吴蓝宇, 胡东风, 陆永潮, 等. 四川盆地涪陵气田五峰组-龙马溪组页岩优势岩相[J]. 石油勘探与开发, 2016, 43(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htm

    WU Lanyu, HU Dongfeng, LU Yongchao, et al. Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in Fuling gas field of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htm
    [27] 陈斐然, 段金宝, 张汉荣, 等. 页岩气"压力系数"分级资源评价方法: 以川东南上奥陶统五峰组-下志留统龙马溪组为例[J]. 石油实验地质, 2020, 42(3): 405-414. doi: 10.11781/sysydz202003405

    CHEN Feiran, DUAN Jinbao, ZHANG Hanrong, et al. Shale gas resource evaluation based on "pressure coefficient": a case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in southeastern Sichuan Basin[J]. Petroleum Geology&Experiment, 2020, 42(3): 405-414. doi: 10.11781/sysydz202003405
    [28] 李建忠, 吴晓智, 郑民, 等. 常规与非常规油气资源评价的总体思路、方法体系与关键技术[J]. 天然气地球科学, 2016, 27(9): 1557-1565.

    LI Jianzhong, WU Xiaozhi, ZHENG Min, et al. General philosophy, method system and key technology of conventional and unconventional oil&gas resource assessment[J]. Natural Gas Geoscience, 2016, 27(9): 1557-1565.
    [29] 张金川, 林腊梅, 李玉喜, 等. 页岩气资源评价方法与技术: 概率体积法[J]. 地学前缘, 2012, 19(2): 184-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201202028.htm

    ZHANG Jinchuan, LIN Lamei, LI Yuxi, et al. The method of shale gas assessment: probability volume method[J]. Earth Science Frontiers, 2012, 19(2): 184-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201202028.htm
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  136
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-21
  • 修回日期:  2022-03-22
  • 刊出日期:  2022-05-28

目录

    /

    返回文章
    返回