Geophysical identification of river-tide controlled deltaic sedimentation and its implication for petroleum geology: a case study of Pingbei area, Xihu Sag, East China Sea Shelf Basin
-
摘要: 沉积环境研究是石油勘探和油气田开发的基础,前人利用岩心、测井、地震资料进行单一沉积相类型的特征、判别研究,而对于河—潮联控区域,河流作用与潮汐作用主体不明确的情况下,判别、区分河控—潮控三角洲的研究相对较少。基于潮汐与河流水体摆动频次的差异,结合自然伽马曲线与泥质含量的关系和河控—潮控三角洲前缘砂体形态、规模差异及水动力强弱对地震相的影响,提出了利用自然伽马测井曲线差值法(ΔGR)和地震相波长/波高比值法的地球物理方法,来综合判别、区分河控—潮控三角洲沉积体系,并以东海陆架盆地西湖凹陷平北地区平湖组沉积体系为例,指明该方法可有效判别河控—潮控三角洲沉积体系。针对该区水下低隆—宝云亭低凸起侧缘,可有效拾取相关参数,判识河控—潮控三角洲体系,落实沟道充填的潮道发育带及潜力目标,明确河控—潮控体系判别对岩性圈闭及有利油藏单元预测的指示意义。Abstract: Understanding of sedimentary environment is the basis of oil exploration and development. Previous research on the characteristics and distinguishing of single sedimentary system by using logging curves and seismic data was mostly carried out on the determined sedimentary system. However, for the river-tide controlled cases, when the main bodies of fluvial and tidal actions are unclear, sedimentary systems are rarely studied. Based on the difference of the oscillation frequency of tide and river water bodies, combined with the correlation between the logging curves of gamma ray and the mud content as well as the influence on seismic facies by hydrodynamic strength and the difference of the size and scale of river-tide controlled delta, a geophysical method on the basis of natural gamma log difference (ΔGR) and seismic facies wave length/height ratio is proposed to distinguish river-tide controlled delta sedimentary systems. A case study was carried out with the sedimentary system of the Pinghu Formation in Pingbei area of the Xihu Sag, East China Sea Shelf Basin, and it was concluded that this method can effectively distinguish river-tide controlled delta system. At the side edge of the underwater low uplift, Baoyunting low uplift, relevant parameters have been effectively picked up to distinguish the river-tide controlled delta system, and to identify the tidal channel development zone and potential targets for channel filling. It is clear that the identification of river-tide controlled system has an indicative significance for the prediction of lithologic traps and favorable reservoir units.
-
图 4 东海陆架盆地区域构造特征(a)、西湖凹陷平北地区断裂与井位分布(b)及新生代地层综合柱状图(c)
据文献[27] 修改。
Figure 4. Features of regional tectonics of East China Sea Shelf Basin (a), fracture and well location in Pingbei area of Xihu Sag (b), and comprehensive histogram of Cenozoic strata (c)
图 5 东海西湖凹陷平北地区取心层段河控—潮控三角洲沉积体系齿化程度连井对比
井位见图 4。
Figure 5. Correlation diagram of dentation degree of river-tide controlled delta system in coring section of Pingbei area, Xihu Sag, East China Sea Shelf Basin
图 6 东海西湖凹陷平北地区取心段河控—潮控三角洲沉积体系齿化程度判别指标
井位见图 4。
Figure 6. Identification index of dentation degree of river-tide controlled delta system in coring section of Pingbei area, Xihu Sag, East China Sea Shelf Basin
表 1 东海西湖凹陷平北地区取心井不同层段内的△GR最大值范围
Table 1. Maximum range of △GR in different intervals of each coring well in Pingbei area, Xihu Sag, East China Sea Shelf Basin
层序 取心井各层段△GR最大值范围/API A-1井 B-1井 B-2井 B-3井 C-1井 C-2井 SQ3 10~15 5~10 15~20 5~10 5~10 5~10 SQ2 15~20 10~15 15~25 10~15 5~10 10~15 SQ1 15~20 20~30 10~15 10~15 10~15 表 2 东海西湖凹陷平北地区各井不同层段内的△GR最大值范围
Table 2. Maximum range of △GR in different intervals of each well in Pingbei area, Xihu Sag, East China Sea Shelf Basin
-
[1] 孙龙德, 方朝亮, 李峰, 等. 中国沉积盆地油气勘探开发实践与沉积学研究进展[J]. 石油勘探与开发, 2010, 37(4): 385-396. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201004002.htmSUN Longde, FANG Chaoliang, LI Feng, et al. Petroleum exploration and development practices of sedimentary basins in China and research progress of sedimentology[J]. Petroleum Exploration and Development, 2010, 37(4): 385-396. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201004002.htm [2] BRENCHLEY P J, WILLIAMS B P J. Sedimentology: recent deve-lopments and applied aspects[M]. Oxford: Blackwells Scientific, 1985: 249-280. [3] 孙尚哲. 测井曲线在木里煤田聚乎更矿区沉积环境分析中的应用[J]. 西部探矿工程, 2014, 26(9): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201409043.htmSUN Shangzhe. Application of log curves in studying sedimentary environment of Muli Coal Field's Jvhugeng diggings[J]. West-China Exploration Engineering, 2014, 26(9): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201409043.htm [4] 吴嘉鹏. 西湖凹陷平湖组潮汐砂脊的发现及意义[J]. 沉积学报, 2016, 34(5): 924-929. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201605011.htmWU Jiapeng. Discovery of tidal sand ridges and its significance of Pinghu Formation in Xihu Depression[J]. Acta Sedimentolo-gica Sinica, 2016, 34(5): 924-929. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201605011.htm [5] 李顺利, 许磊, 于兴河, 等. 东海陆架盆地西湖凹陷渐新世海侵作用与潮控体系沉积特征[J]. 古地理学报, 2018, 20(6): 1023-1032. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201806010.htmLI Shunli, XU Lei, YU Xinghe, et al. Marine transgressions and characteristics of tide-dominated sedimentary systems in the Oligocene, Xihu Sag, East China Sea Shelf Basin[J]. Journal of Palaeogeography, 2018, 20(6): 1023-1032. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201806010.htm [6] 贾进华. 古海岸带碎屑潮汐环境沉积微相与砂体分布: 以塔中地区志留系为例[J]. 中国矿业大学学报, 2019, 48(1): 110-123. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201901013.htmJIA Jinhua. Sedimentary microfacies and sandbody distribution in the clastic tidal environment of the ancient coastal zone: a case study of Silurian in Tazhong area, Tarim Basin[J]. Journal of China University of Mining & Technology, 2019, 48(1): 110-123. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201901013.htm [7] NANSON R A, VAKARELOV B K, AINSWORTH R B, et al. Evolution of a Holocene, mixed-process, forced regressive shoreline: the Mitchell River delta, Queensland, Australia[J]. Marine Geology, 2013, 339: 22-43. doi: 10.1016/j.margeo.2013.04.004 [8] 赵谦, 周江羽, 张莉, 等. 利用地震波形—振幅响应技术预测海相碎屑岩岩性组合: 以北康盆地为例[J]. 石油地球物理勘探, 2017, 52(6): 1280-1289. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201706019.htmZHAO Qian, ZHOU Jiangyu, ZHANG Li, et al. Prediction of marine clastic rocks assemblage with seismic waveform and amplitude responses: an example in Beikang Basin, South China Sea[J]. Oil Geophysical Prospecting, 2017, 52(6): 1280-1289. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201706019.htm [9] 关旭同, 李胜利, 马水平, 等. 湖盆小型细粒浅水三角洲沉积模式[J]. 特种油气藏, 2021, 28 (1): 77-85. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202105011.htmGUAN Xutong, LI Shengli, MA Shuiping, et al. Sedimentary model of lacustrine small fine-grained shallow water delta[J]. Special Oil & Gas Reserviors, 2021, 28(1): 77-85. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202105011.htm [10] 严皓, 李宾, 谷志猛, 等. 渤海J气田湖底扇储层精细刻画[J]. 断块油气田, 2020, 27(3): 299-303. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202003007.htmYAN Hao, LI Bin, GU Zhimeng, et al. Fine reservoir description of sublacustrine fan in Bohai J gas field[J]. Fault-Block Oil and Gas Field, 2020, 27(3): 299-303. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202003007.htm [11] 张兵, 王绪本, 周刚, 等. 大川中地区须家河组二、四段地震相与沉积相研究[J]. 海洋地质前沿, 2013, 29(3): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201303005.htmZHANG Bing, WANG Xuben, ZHOU Gang, et al. Study of seismic and sedimentary facies of the 2nd and 4th members of the Xujiahe Formation in the Great Central Sichuan[J]. Marine Geology Frontiers, 2013, 29(3): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201303005.htm [12] 孔令辉, 凌涛, 叶青, 等. 地震相分析在沉积相研究中的应用[J]. 复杂油气藏, 2019, 12(2): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201902008.htmKONG Linghui, LING Tao, YE Qing, et al. Application of seismic facies analysis in sedimentary facies research[J]. Complex Hydrocarbon Reservoirs, 2019, 12(2): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201902008.htm [13] 张晶玉, 范廷恩, 王海峰, 等. 海相薄砂岩储层精细描述及地震沉积学认识[J]. 油气藏评价与开发, 2021, 11(5): 680-687. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202105003.htmZHANG Jingyu, FAN Tingen, WANG Haifeng, et al. Marine thin sandstone reservoir prediction method and seismic sedimentology study[J]. Reservoir Evaluation and Development, 2021, 11(5): 680-687. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202105003.htm [14] 李令喜, 苏云, 唐娟, 等. 东濮凹陷西南洼沙二下砂泥岩薄互层地震描述技术[J]. 断块油气田, 2021, 28(4): 493-497. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202104012.htmLI Lingxi, SU Yun, TANG Juan, et al. The technique of seismic description for Es2x sand-shale interbedded layers in the Southwest Depression of Dongpu Sag[J]. Fault-Block Oil and Gas Field, 2021, 28(4): 493-497. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202104012.htm [15] 刘建伟. 济阳坳陷东营凹陷北带砂砾岩扇体沉积相井震联合地震精细描述[J]. 特种油气藏, 2021, 28(1): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202101003.htmLIU Jianwei. Accurate description by well-to-seismic integration of glutenite fan sedimentation in the northern Dongying Sag, Jiyang Sub-basin[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202101003.htm [16] WOOD L J. Predicting tidal sand reservoir architecture using data from modern and ancient depositional systems[C]//Integration of outcrop and modern analogs in reservoir modeling: AAPG memoir 80. Tulsa: AAPG, 2004: 45-66. [17] ZHAO Qian, ZHU Hongtao, ZHOU Xinhuai, et al. Tidal sand ridges seismic identification and its application in the Xihu Depression, East China Sea Shelf Basin: enlightenment to hydrocarbon exploration[J]. Journal of Petroleum Science and Engineering, 2022, 212: 110246. [18] 蔺爱军, 胡毅, 林桂兰, 等. 海底沙波研究进展与展望[J]. 地球物理学进展, 2017, 32(3): 1366-1377. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201703056.htmLIN Aijun, HU Yi, LIN Guilan, et al. Progress and perspective of submarine sand waves researches[J]. Progress in Geophysics, 2017, 32(3): 1366-1377. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201703056.htm [19] ASHLEY G M. Classification of large-scale subaqueous bedforms: a new look at an old problem-SEPM bedforms and bedding structures[J]. Journal of Sedimentary Petrology, 1990, 60(1): 160-172. [20] 周荔青, 江东辉, 张尚虎, 等. 东海西湖凹陷大中型油气田形成条件及勘探方向[J]. 石油实验地质, 2020, 42(5): 803-812. doi: 10.11781/sysydz202005803ZHOU Liqing, JIANG Donghui, ZHANG Shanghu, et al. Formation conditions and exploration direction of large and medium oil and gas reservoirs in Xihu Sag, East China Sea[J]. Petroleum Geology & Experiment, 2020, 42(5): 803-812. doi: 10.11781/sysydz202005803 [21] 徐陈杰, 叶加仁, 刘金水, 等. 东海西湖凹陷平湖组Ⅲ型干酪根暗色泥岩生排烃模拟[J]. 石油与天然气地质, 2020, 41(2): 359-366. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202002013.htmXU Chenjie, YE Jiaren, LIU Jinshui, et al. Simulation of hydrocarbon generation and expulsion for the dark mudstone with Type-Ⅲ kerogen in the Pinghu Formation of Xihu Sag in East China Sea Shelf Basin[J]. Oil & Gas Geology, 2020, 41(2): 359-366. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202002013.htm [22] 张武, 蒋一鸣, 肖晓光, 等. 东海陆架盆地西湖凹陷中北部花港组储层致密化过程分析[J]. 石油实验地质, 2021, 43(1): 86-95. doi: 10.11781/sysydz202101086ZHANG Wu, JIANG Yiming, XIAO Xiaoguang, et al. Densification process of Huagang Formation in northern and central Xihu Sag of East China Sea Shelf Basin[J]. Petroleum Geology & Experiment, 2021, 43(1): 86-95. doi: 10.11781/sysydz202101086 [23] 王健伟, 吕鹏, 曾联波, 等. 西湖凹陷X气藏花港组H3段储层特征及影响因素[J]. 断块油气田, 2020, 27(1): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202001006.htmWANG Jianwei, LV Peng, ZENG Lianbo, et al. Characteristics and influencing factors of reservoir in H3 section of Huagang Formation, X gas reservoir, Xihu Sag[J]. Fault-Block Oil and Gas Field, 2020, 27(1): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202001006.htm [24] 于兴河, 李顺利, 曹冰, 等. 西湖凹陷渐新世层序地层格架与沉积充填响应[J]. 沉积学报, 2017, 35(2): 299-314. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201702009.htmYU Xinghe, LI Shunli, CAO Bing, et al. Oligocene sequence framework and depositional response in the Xihu Depression, East China Sea Shelf Basin[J]. Acta Sedimentologica Sinica, 2017, 35(2): 299-314. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201702009.htm [25] 张建培, 徐发, 钟韬, 等. 东海陆架盆地西湖凹陷平湖组—花港组层序地层模式及沉积演化[J]. 海洋地质与第四纪地质, 2012, 32(1): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201201009.htmZHANG Jianpei, XU Fa, ZHONG Tao, et al. Sequence stratigraphic models and sedimentary evolution of Pinghu and Huagang Formations in Xihu Trough[J]. Marine Geology & Quaternary Geology, 2012, 32(1): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201201009.htm [26] 周心怀, 高顺莉, 高伟中, 等. 东海陆架盆地西湖凹陷平北斜坡带海陆过渡型岩性油气藏形成与分布预测[J]. 中国石油勘探, 2019, 24(2): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201902003.htmZHOU Xinhuai, GAO Shunli, GAO Weizhong, et al. Formation and distribution of marine-continental transitional lithologic reservoirs in Pingbei Slope Belt, Xihu Sag, East China Sea Shelf Basin[J]. China Petroleum Exploration, 2019, 24(2): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201902003.htm [27] 蔡华, 秦兰芝, 刘英辉. 西湖凹陷平北斜坡带海陆过渡相源—汇系统差异性及其耦合模式[J]. 地球科学, 2019, 44(3): 880-897. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903016.htmCAI Hua, QIN Lanzhi, LIU Yinghui. Differentiation and coupling model of source-to-sink systems with transitional facies in Pingbei Slope of Xihu Sag[J]. Earth Science, 2019, 44(3): 880-897. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903016.htm