Physical simulation of dynamic accumulation of fault-controlled gas reservoirs and its implications: a case study of typical gas reservoirs in northwestern part of Qaidam Basin
-
摘要: 天然气成藏过程的动态物理模拟是揭示天然气运聚成藏机理、总结其分布规律的重要手段,然而由于天然气本身特性,使得“易泄漏、难动态、难观察”成为天然气运聚动态成藏物理模拟的最大问题。为了揭示断控气藏运聚成藏机制,总结其气藏形成序列和分布模式,以柴达木盆地西北地区东坪、马海—南八仙典型气藏为例,在建立各个典型气藏成藏演化地质模式基础上,针对气藏模拟存在的问题,设计了既能实现构造动态变化过程,同时又能清晰观察气体充注、运移、聚集现象的“一种可调式天然气运聚成藏模拟装置”。运用该装置成功模拟了东坪、马海—南八仙等典型气藏形成过程,明确了断层不仅作为气体运移和传递动力的通道,还控制了演化序列和分布模式;建立了“晚期成藏”和“长期成藏”两种不同类型天然气藏的形成演化序列模式,揭示了“断传高压驱动”天然气运移成藏机理,明确“深浅共存、浅差深好”的天然气藏纵向保存系列,提出了“有浅(浅层气藏)必有深(深层气藏)”,据“浅”寻找“深”的天然气勘探新理念。Abstract: The dynamic physical simulation of natural gas accumulation process is one of the important means to reveal the mechanism of natural gas migration and accumulation and to summarize its distribution law. However, due to the characteristics of natural gas itself including "easy to leak, difficult to move and difficult to observe" have become holdbacks for the physical simulation of natural gas migration and accumulation. In order to reveal the migration and accumulation mechanisms of fault-controlled gas reservoirs, and to summarize the formation sequence and distribution pattern of gas reservoirs, typical reservoirs in Dongping, Mahai and Nanbaxian areas in the northwestern part of Tarim Basin were taken as examples to establish a geological evolution model for each reservoir. Aiming at the problems of gas reservoir simulation, an adjustable simulation device for gas migration and accumulation was designed, which could realize the dynamic process of structural change and clarify the phenomenon of gas charging and migration, and the formation process of typical gas reservoirs such as Dongping, and Mahai-Nanbaxian, etc. was successfully simulated. It is clear that the fault not only acts as a channel for gas migration and power transmission, but also controls the evolution sequence and distribution pattern. The formation and evolution sequence models of two different types of natural gas reservoirs, named "late accumulation" and "long-term accumulation", were proposed, the mechanism of natural gas migration and accumulation driven by "fault transmission and high pressure" was revealed, and the vertical preservation sequence featured by "co-existence of natural gas in both deep and shallow formations, and the deeper formations are more favorable for preservation" was concluded. A new concept of natural gas exploration was put forward that "if there are shallow gas reservoirs, there must be deep ones", and we can find natural gas from shallow to deep formations.
-
表 1 柴达木盆地东坪气藏动态成藏物理模拟实验参数设定
Table 1. Parameter setting of physical simulation experiment for dynamic accumulation of Dongping gas reservoir in Qaidam Basin
实验参数 65.5~23.5 Ma(第一阶段)E 23.5~5.3 Ma(第二阶段)N1 5.3.0 ~0 Ma(第三阶段)N2—Q 实验过程初步设定 缓慢挤压 缓慢挤压逐渐加速注气阶段 加速挤压大量注气阶段 地史时间差/Ma 0 18.2,23.5 实验时间设定/min 0 9.1,11.8 预期压缩距离/mm 10 50 预期压缩速率/(mm·min-1) 0.55 18.5 进气量 无 少量 大量 表 2 柴达木盆地马海西—南八仙气藏物理模拟实验参数设定
Table 2. Parameter setting of physical simulation experiment for Western Mahai-Nanbaxian gas reservoirs in Qaidam Basin
实验参数 65.5~23.5 Ma(第一阶段)E 23.5~3.0 Ma(第二阶段)N1—N22 3.0~0 Ma(第三阶段)N23—Q 实验过程初步设定 缓慢挤压 缓慢挤压逐渐加速注气阶段 加速挤压大量注气阶段 地史时间差/Ma 0 20.5,23.5 实验时间预期设定/min 0 8.0,22.0 预期压缩距离/mm 10 22 预期压缩速率/(mm·min-1) 0.8 1.57 进气量 无 少量 大量 -
[1] 卢家烂, 傅家谟, 张惠之, 等. 不同条件下天然气运移影响的模拟实验研究[J]. 石油与天然气地质, 1991, 12(2): 153-160.LU Jialan, FU Jiamo, ZHANG Huizhi, et al. Study on simulation of natural gas migration in different conditions[J]. Oil & Gas Geology, 1991, 12(2): 153-160. [2] 卢双舫, 赵锡嘏, 黄第藩, 等. 煤成烃的生成和运移的模拟实验研究Ⅰ. 气态和液态产物特征及其演化[J]. 石油实验地质, 1994, 16(3): 290-302. doi: 10.11781/sysydz199403290LU Shuangfang, ZHAO Xigu, HUANG Difan, et al. Modelling experiments on the generation and migration of coal-derived hydrocarbons: I. The chakacteristics of gaseous and liquid hydrodarbon products and their evolutions[J]. Experimental Petroleum Ceology, 1994, 16(3): 290-302. doi: 10.11781/sysydz199403290 [3] 李剑, 王晓波, 魏国齐, 等. 天然气基础地质理论研究新进展与勘探领域[J]. 天然气工业, 2018, 38(4): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201804007.htmLI Jian, WANG Xiaobo, WEI Guoqi, et al. New progress in basic natural gas geological theories and future exploration targets in China[J]. Natural Gas Industry, 2018, 38(4): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201804007.htm [4] 金之钧, 张金川. 天然气成藏的二元机理模式[J]. 石油学报, 2003, 24(4): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200304003.htmJIN Zhijun, ZHANG Jinchuan. Two typical types of mechanisms and models for gas accumulations[J]. Acta Petrolei Sinica, 2003, 24(4): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200304003.htm [5] 刘吉余, 王明明, 李景明. 天然气运聚成藏过程模拟研究现状[J]. 天然气工业, 2006, 26(7): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200607008.htmLIU Jiyu, WANG Mingming, LI Jingming. Status of simulation study of gas migration and accumulation process[J]. Natural Gas Industry, 2006, 26(7): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200607008.htm [6] 史基安, 卢龙飞, 王金鹏, 等. 天然气运移物理模拟实验及其结果[J]. 天然气工业, 2004, 24(12): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200412010.htmSHI Ji'an, LU Longfei, WANG Jinpeng, et al. Physical modeling tests and results of natural gas migration[J]. Natural Gas Industry, 2004, 24(12): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200412010.htm [7] 史基安, 孙秀建, 王金鹏, 等. 天然气运移物理模拟实验及其组分分异与碳同位素分馏特征[J]. 石油实验地质, 2005, 27(3): 293-298. doi: 10.11781/sysydz200503293SHI Jian, SUN Xiujian, WANG Jinpeng, et al. Physical simulating experiment of natural gas migration and its characteristics of composition differentiation and carbon isotope fractionation[J]. Petroleum Geology & Experiment, 2005, 27(3): 293-298. doi: 10.11781/sysydz200503293 [8] 张洪, 庞雄奇, 姜振学. 物理模拟实验在天然气成藏研究中的应用: 以柴达木盆地北缘南八仙和马海气田成藏过程为例[J]. 地质论评, 2004, 50(6): 644-648. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200406013.htmZHANG Hong, PANG Xiongqi, JIANG Zhenxue. Physical simulation experiment study on the natural gas accumulation: a case study of Nanbaxian and Mahai gas field accumulation[J]. Geological Review, 2004, 50(6): 644-648. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200406013.htm [9] 姜林, 洪峰, 柳少波, 等. 油气二次运移过程差异物理模拟实验[J]. 天然气地球科学, 2011, 22(5): 784-788. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201105006.htmJIANG Lin, HONG Feng, LIU Shaobo, et al. Physical simulation of oil and natural gas secondary migration[J]. Natural Gas Geoscience, 2011, 22(5): 784-788. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201105006.htm [10] 公言杰, 柳少波, 姜林, 等. 油气二次运移可视化物理模拟实验技术研究进展[J]. 断块油气田, 2014, 21(4): 548-462. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201404013.htmGONG Yanjie, LIU Shaobo, JIANG Lin, et al. Research progress in visual physical simulation experiment technology of secondary hydrocarbon migration[J]. Fault-Block Oil and Gas Field, 2014, 21(4): 458-462. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201404013.htm [11] MUNN M J. Studies in the application of the anticlinal theory of oil and gas accumulation[J]. Economic Geology, 1909, 4(2): 141-157. [12] EMMONS W H. Experiments on accumulation of oil in sands[J]. AAPG Bulletin, 1921, 5(1): 103-104. [13] HUBBERT M K. Entrapment of petroleum under hydrodynamic conditions[J]. AAPG Bulletin, 1953, 37(8): 1954-2026. [14] HILL V G. Geochemical prospecting for nickel in the Blue Mountain area, Jamaica, W.I. [J]. Economic Geology, 1961, 56(6): 1025-1032. [15] LENORMAND R, TOUBOUL E, ZARCONE C. Numerical models and experiments on immiscible displacements in porous media[J]. Journal of Fluid Mechanics, 1988, 189: 165-187. [16] DEMBICKI H JR, ANDERSON M J. Secondary migration of oil: experiments supporting efficient movement of separate, buoyant oil phase along limited conduits[J]. AAPG Bulletin, 1989, 73(8): 1018-1021. [17] LIONEL C, FU X W, IOANNIS C, et al. An experimental study of secondary oil migration[J]. AAPG Bulletin, 1992, 76(5): 638-650. [18] 米敬奎, 张水昌, 李新虎. 深盆气藏形成机理实验模拟[J]. 天然气地球科学, 2005, 16(3): 302-305. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200503009.htmMI Jingkui, ZHANG Shuichang, LI Xinhu. Experimental simulation for the forming mechanism of deep basin gas trap[J]. Natural Gas Geoscience, 2005, 16(3): 302-305. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200503009.htm [19] 陈义才, 王波, 张胜, 等. 苏里格地区盒8段天然气充注成藏机理与成藏模式探讨[J]. 石油天然气学报, 2010, 32(4): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201004004.htmCHEN Yicai, WANG Bo, ZHANG Sheng, et al. The discussion of mechanism and pattern of hydrocarbon accumulation of gas-filling in Sulige region of the 8 member of Xiashihezi Formation[J]. Journal of Oil and Gas Technology, 2010, 32(4): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201004004.htm [20] 姜振学, 庞雄奇, 曾溅辉, 等. 油气优势运移通道的类型及其物理模拟实验研究[J]. 地学前缘, 2005, 12(4): 507-516. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200504026.htmJIANG Zhenxue, PANG Xiongqi, ZENG Jianhui, et al. Research on types of the dominant migration pathways and their physical simulation experiments[J]. Earth Science Frontiers, 2005, 12(4): 507-516. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200504026.htm [21] 罗晓容, 孙盈, 汪立群, 等. 柴达木盆地北缘西段油气成藏动力学研究[J]. 石油勘探与开发, 2013, 40(2): 159-170. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302003.htmLUO Xiaorong, SUN Ying, WANG Liqun, et al. Dynamics of hydrocarbon accumulation in the west section of the northern margin of the Qaidam Basin, NW China[J]. Petroleum Exploration and Development, 2013, 40(2): 159-170. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302003.htm [22] 曾旭, 李剑, 田继先, 等. 柴达木盆地腹部晚期构造带成藏模拟实验研究[J]. 天然气地球科学, 2018, 29(9): 1301-1309. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201809008.htmZENG Xu, LI Jian, TIAN Jixian, et al. Physical simulation experimental study on gas accumulation in the late tectonic belts of the northern border of Qaidam Basin[J]. Natural Gas Geoscience, 2018, 29(9): 1301-1309. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201809008.htm [23] 郑定业, 庞雄奇, 姜福杰, 等. 鄂尔多斯盆地临兴地区上古生界致密气成藏特征及物理模拟[J]. 石油与天然气地质, 2020, 41(4): 744-754. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004009.htmZHENG Dingye, PANG Xiongqi, JIANG Fujie, et al. Characteristics and physical simulation of the Upper Paleozoic tight gas accumulation in Linxing area, Ordos Basin[J]. Oil & Gas Geology, 2020, 41(4): 744-754. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004009.htm [24] 高树生, 刘华勋, 叶礼友, 等. 页岩与致密砂岩气井产气机理及生产动态模拟对比[J]. 天然气地球科学, 2021, 32(1): 98-108. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202101010.htmGAO Shusheng, LIU Huaxun, YE Liyou, et al. A comparative study on production mechanism & dynamics simulation of tight sandstone and shale gas well[J]. Natural Gas Geoscience, 2021, 32(1): 98-108. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202101010.htm [25] 田建华, 董清源, 刘军. 柴西地区古近系—新近系天然气成藏条件分析及目标优选[J]. 特种油气藏, 2021, 28(1): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202101004.htmTIAN Jianhua, DONG Qingyuan, LIU Jun. Analysis on accumulation conditions and target optimization of Paleogene-Neogene gas reservoirs in western Qaidam Basin[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202101004.htm [26] 李清山, 郭少斌, 侯泽生, 等. 柴达木盆地上新世狮子沟期古气候演化与层序地层[J]. 石油实验地质, 2020, 42(1): 28-36. doi: 10.11781/sysydz202001028LI Qingshan, GUO Shaobin, HOU Zesheng, et al. Palaeoclimate evolution and sequence stratigraphy during Pliocene Shizigou stage, Qaidam Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 28-36. doi: 10.11781/sysydz202001028 [27] 舒豫川, 胡广, 庞谦, 等. 柴达木盆地咸湖相烃源岩特征: 以英西地区下干柴沟组上段为例[J]. 断块油气田, 2021, 28(2): 179-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102008.htmSHU Yuchuan, HU Guang, PANG Qian, et al. Characteristics of source rocks of salt lake facies in Qaidam Basin: taking upper member of Xiaganchaigou Formation in Yingxi region as an example[J]. Fault-Block Oil and Gas Field, 2021, 28(2): 179-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102008.htm [28] 伍劲, 刘占国, 朱超, 等. 柴达木盆地西部下干柴沟组下段碎屑岩储层物性差异主控因素分析[J]. 油气地质与采收率, 2021, 28(4): 46-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202104006.htmWU Jin, LIU Zhanguo, ZHU Chao, et al. Main controlling factors of clastic reservoir property difference of Lower Ganchaigou Formation in western Qaidam Basin[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(4): 46-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202104006.htm [29] 王琳霖, 于冬冬, 浮昀, 等. 柴达木盆地西部构造演化与差异变形特征及对油田水分布的控制[J]. 石油实验地质, 2020, 42(2): 186-192. doi: 10.11781/sysydz202002186WANG Linlin, YU Dongdong, FU Yun, et al. Tectonic evolution and differential deformation controls on oilfield water distribution in western Qaidam Basin[J]. Petroleum Geology & Experiment, 2020, 42(2): 186-192. doi: 10.11781/sysydz202002186