Significance and formation mechanism of abnormally pressured compartments of shale gas in the Ordovician Wufeng-Silurian Longmaxi formations, southeastern Sichuan Basin
-
摘要: 川东南地区焦石坝构造、丁山构造以及南部长宁黄金坝构造页岩气普遍存在超压现象,上奥陶统五峰组—下志留统龙马溪组页岩气存在由3个隔板构成的2个页岩气异常压力封存箱。下封存箱位置与五峰组—龙马溪组优质页岩层段相当,由上奥陶统临湘组与宝塔组致密含泥灰岩、瘤状灰岩形成页岩气封存箱的底部封隔层;顶板位于龙马溪组龙一段一亚段的中部,由火山灰蚀变黏土岩夹层、薄层碳酸盐岩及泥岩互层组成,同时形成上封存箱的底板;上封存箱顶板位于龙马溪组二段与龙一段分界处,由泥岩或泥岩夹薄层碳酸盐岩互层组成。研究认为页岩气封存箱顶、底板封隔层含致密碳酸盐岩或碳酸盐岩薄层并与泥岩互层时具有更好的封盖能力。封存箱顶底板与封存箱内部在测井曲线上(如声波、电阻率、自然伽马等)存在差异。上、下封存箱内部特征也不同:上封存箱内页岩微观结构显示强的各向异性,石英含量低、黏土含量高,有机质含量低,有机质孔隙连通性差,全烃含量低,孔隙度低;下封存箱内页岩微观结构显示各向同性,石英含量高、黏土含量低,有机质含量高,有机质相连,有机孔相通,连通性好,全烃含量高,孔隙度高。该页岩气异常压力封存箱经历了早期快速埋藏、有机质未熟低熟、以正常流体压力系统为主的封存箱雏形阶段,快速深埋大量生烃的液态烃类流体超压封存箱形成阶段,深埋及高过成熟大量生气的超压封存箱形成阶段,以及晚期页岩气异常压力封存箱改造定型阶段,最终形成由3个隔板组成页岩气底封顶盖、地层侧向倾伏及逆断层侧向封堵、空间上相互叠置的上、下2个互相独立的页岩气异常压力封存箱。孔隙度高、有机质含量高、连通性好及压力系数高的下封存箱是页岩气高效开发的优先目标。Abstract: Overpressure is commonly existed in shale gas pools of Jiaoshiba and Dingshan structures in the southeastern part of Sichuan and Huangjinba structure in Changning area of the southern region of Sichuan. From the Upper Ordovician Wufeng Formation to the Lower Silurian Longmaxi Formation, there are two abnormally pressured compartments of shale gas separated by three sealing layers. The lower compartment is in accordance with the superior shale layer in the Wufeng-Longmaxi formations, sealed by tight marl-bearing limestone and nodular limestone in the Upper Ordovician Linxiang and Baota formations at the bottom and the interbeds of volcanic ash-altered clay rock, thin carbonate rock and mudstone in the central segment of the first sub-member of the first member of Longmaxi Formation on the top, which also works as the sealing layer at the bottom of the upper compartment. Between the first and second members of the Longmaxi Formation, sealing layer for the top of the upper compartment exitsed, which is mainly composed of mudstone or mudstone interbedded with thin carbonate rocks.Researches show that the sealing layers have better sealing ability when they contain tight carbonate rock or thin carbonate rock and are interbedded with mudstone. There are differences in logging curves such as acoustic wave, resistivity, natural gamma, etc. between the top and bottom sealing layers and the compartments. In the upper compartment, the microstructure of shale shows strong anisotropy with low quartz content, high clay content, low organic matter content, poor organic pore connectivity, low total hydrocarbon content, and low porosity. In the lower compartment, the microstructure of shale shows isotropy, with high quartz content, low clay content, high organic matter content, interconnected organic matter, interconnected organic pores, good connectivity, high total hydrocarbon content, and high porosity. These compartments have experienced the early stage of rapid burial, the embryonic stage in which organic matter is immature or low-mature and is dominated by normal fluid pressure system, the formation stage in which a large quantity of hydrocarbon is generated after fast and deep burial and is dominated by overpressure system, the formation stage in which a large quantity of gas is generated after deep burial and high-degree thermal evolution and is dominated by overpressure system, and finally the late stage of the formation of abnormally pressured compartments for shale gas, resulting in two isolated and abnormally pressured compartments for shale gas with three sealing layers on the top or at the bottom, lateral dipping of formation, and lateral sealing of reverse fault. The lower compartment with high porosity, high organic matter content, good connectivity and high pressure coefficient is the priority target for the efficient development of shale gas.
-
图 3 川南昭通地区X1井五峰组—龙马溪组页岩测井曲线与异常高压封存箱
据文献[20]修改。
Figure 3. Logging curves of shale and abnormally pressured compartments in Wufeng-Longmaxi formations, well X1, Zhaotong area, southern Sichuan Basin
图 5 川东南丁山构造D1井五峰组—龙马溪组页岩气下封存箱顶、底板岩石薄片分析
a.底板含泥灰岩,极致密结构,单偏光10×2.5,4 227.5 m;b.a图放大,微晶结构正交偏光10×50;c.顶板碳酸盐岩,见近垂向微裂缝及沥青充填,单偏光10×2.5,4 193.8 m;d.c图放大,微晶结构, 正交偏光10×50;e.顶板火山灰蚀变黏土岩,纹层状结构,单偏光10×2.5,4 188.3 m;f.e图放大,见斑晶石英,正交偏光10×50
Figure 5. Thin section analysis of top and bottom sealing layers for abnormally pressured compartments of shale gas in Wufeng-Longmaxi formations, well D1, Dingshan structure, southeastern Sichuan Basin
图 7 川东南丁山构造D1井五峰组—龙马溪组上、下封存箱页岩储层微观结构分析
a.下封存箱页岩微层理缝不发育,显示结构各向同性,4 221 m;b.上封存箱页岩微层理缝发育,显示结构各向异性,4 181 m;c.下封存箱页岩有机质含量高,有机质相连,孔隙连通性好,4 221 m;d.上封存箱页岩有机质少,有机质颗粒不连接,连通性差,4 181 m
Figure 7. Microstructure of shale reservoir in upper and lower compartments in Wufeng-Longmaxi formations, well D1, Dingshan structure, southeastern Sichuan Basin
表 1 川东南丁山构造D1井异常压力封存箱顶、底板物性分析
Table 1. Physical properties of top and bottom sealing layers for abnormally pressured compartments in well D1, Dingshan structure, southeastern Sichuan Basin
顶底板 岩性 井深/
m孔隙度/
%渗透率/
10-3 μm2微孔(<2 nm) 介孔(2~50 nm) 大孔(>50 nm) 比表面积/
(m2·g-1)孔容/
(mL·g-1)占比/
%孔容/
(mL·g-1)占比/
%孔容/
(mL·g-1)占比/
%顶板 火山灰蚀变泥岩 4 188.3 0.60 0.001 61 0.072 1 82.55 0.013 7 15.70 0.001 5 1.75 17.24 泥质白云岩 4 193.8 1.77 0.002 11 0.017 5 75.18 0.004 6 19.73 0.001 2 5.08 4.82 底板 泥质灰岩 4 227.5 0.93 0.005 30 0.007 5 61.18 0.003 3 27.23 0.001 4 11.63 2.53 瘤状灰岩 4 229.1 0.83 0.123 00 0.003 9 53.06 0.002 1 29.16 0.001 3 17.80 1.32 瘤状灰岩 4 229.7 0.70 0.007 49 0.007 1 60.65 0.003 2 27.66 0.001 4 11.65 2.36 -
[1] HUNT J M. Generation and migration of petroleum from abnormally pressured fluid compartments[J]. AAPG Bulletin, 1990, 74(1): 1-12. [2] POWLEY D E. Pressures and hydrogeology in petroleum basins[J]. Earth-Science Reviews, 1990, 29(1-4): 215-226. doi: 10.1016/0012-8252(90)90038-W [3] BRADLEY J S, POWLEY D E. Pressure compartments in sedimentary basins: a review[C]//ORTOLEVA P J. Basin compartments and seals: AAPG memoir 61. Tulsa: AAPG, 1994: 3-26. [4] 周兴熙. 封存箱辨义及主要类型[J]. 石油实验地质, 2006, 28(5): 424-429. doi: 10.11781/sysydz200605424ZHOU Xingxi. Discuss on meaning and mostly type of compartment[J]. Petroleum Geology & Experiment, 2006, 28(5): 424-429. doi: 10.11781/sysydz200605424 [5] 张义纲. 天然气的生成聚集和保存[M]. 南京: 河海大学出版社, 1991.ZHANG Yigang. Generation, accmulation and preservation of natural gas[M]. Nanjing: Hohai University Press, 1991. [6] 何治亮, 胡宗全, 聂海宽, 等. 四川盆地五峰组—龙马溪组页岩气富集特征与"建造—改造"评价思路[J]. 天然气地球科学, 2017, 28(5): 724-733. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201705007.htmHE Zhiliang, HU Zongquan, NIE Haikuan, et al. Characterization of shale gas enrichment in the Wufeng-Longmaxi Formation in the Sichuan Basin and its evaluation of geological construction-transformation evolution sequence[J]. Natural Gas Geoscience, 2017, 28(5): 724-733. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201705007.htm [7] 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htmGUO Tonglou, ZHANG Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm [8] 胡东风, 张汉荣, 倪楷, 等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业, 2014, 34(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htmHU Dongfeng, ZHANG Hanrong, NI Kai, et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htm [9] 郭旭升, 胡东风, 李宇平, 等. 涪陵页岩气田富集高产主控地质因素[J]. 石油勘探与开发, 2017, 44(4): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704002.htmGUO Xusheng, HU Dongfeng, LI Yuping, et al. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field[J]. Petroleum Exploration and Development, 2017, 44(4): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704002.htm [10] 郭旭升, 胡东风, 黄仁春, 等. 四川盆地深层—超深层天然气勘探进展与展望[J]. 天然气工业, 2020, 40(5): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202005002.htmGUO Xusheng, HU Dongfeng, HUANG Renchun, et al. Deep and ultra-deep natural gas exploration in the Sichuan Basin: progress and prospect[J]. Natural Gas Industry, 2020, 40(5): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202005002.htm [11] 郭旭升, 郭彤楼, 魏志红, 等. 中国南方页岩气勘探评价的几点思考[J]. 中国工程科学, 2012, 14(6): 101-105. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201206013.htmGUO Xusheng, GUO Tonglou, WEI Zhihong, et al. Thoughts on shale gas exploration in southern China[J]. Engineering Science, 2012, 14(6): 101-105. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201206013.htm [12] 郭旭升. 南方海相页岩气"二元富集"规律: 四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7): 1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htmGUO Xusheng. Rules of two-factor enrichment for marine shale gas in southern China: understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htm [13] 郭旭升, 胡东风, 魏志红, 等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探, 2016, 21(3): 24-37. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201603003.htmGUO Xusheng, HU Dongfeng, WEI Zhihong, et al. Discovery and exploration of Fuling shale gas field[J]. China Petroleum Exploration, 2016, 21(3): 24-37. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201603003.htm [14] 胡东风. 四川盆地东南缘向斜构造五峰组—龙马溪组常压页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(5): 605-615. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201905001.htmHU Dongfeng. Main controlling factors on normal pressure shale gas enrichments in Wufeng-Longmaxi formations in synclines, southeastern Sichuan Basin[J]. Natural Gas Geoscience, 2019, 30(5): 605-615. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201905001.htm [15] 何治亮, 聂海宽, 蒋廷学. 四川盆地深层页岩气规模有效开发面临的挑战与对策[J]. 油气藏评价与开发, 2021, 11(2): 135-145. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202102001.htmHE Zhiliang, NIE Haikuan, JIANG Tingxue. Challenges and countermeasures of effective development with large scale of deep shale gas in Sichuan Basin[J]. Reservoir Evaluation and Development, 2021, 11(2): 135-145. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202102001.htm [16] 郭彤楼. 中国式页岩气关键地质问题与成藏富集主控因素[J]. 石油勘探与开发, 2016, 43(3): 317-326. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603002.htmGUO Tonglou. Key geological issues and main controls on accumulation and enrichment of Chinese shale gas[J]. Petroleum Exploration and Development, 2016, 43(3): 317-326. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603002.htm [17] 郭旭升, 胡东风, 文治东, 等. 四川盆地及周缘下古生界海相页岩气富集高产主控因素: 以焦石坝地区五峰组—龙马溪组为例[J]. 中国地质, 2014, 41(3): 893-901. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201403016.htmGUO Xusheng, HU Dongfeng, WEN Zhidong, et al. Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery: a case study of the Wufeng-Longmaxi formation of Jiaoshiba area[J]. Geology in China, 2014, 41(3): 893-901. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201403016.htm [18] 魏志红. 四川盆地及其周缘五峰组—龙马溪组页岩气的晚期逸散[J]. 石油与天然气地质, 2015, 36(4): 659-665. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504017.htmWEI Zhihong. Late fugitive emission of shale gas from Wufeng-Longmaxi formation in Sichuan Basin and its periphery[J]. Oil & Gas Geology, 2015, 36(4): 659-665. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504017.htm [19] 聂海宽, 金之钧, 边瑞康, 等. 四川盆地及其周缘上奥陶统五峰组—下志留统龙马溪组页岩气"源—盖控藏"富集[J]. 石油学报, 2016, 37(5): 557-571. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201605001.htmNIE Haikuan, JIN Zhijun, BIAN Ruikang, et al. The "source-cap hydrocarbon-controlling" enrichment of shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2016, 37(5): 557-571. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201605001.htm [20] 陈志鹏, 梁兴, 张介辉, 等. 昭通国家级示范区龙马溪组页岩气储层超压成因浅析[J]. 天然气地球科学, 2016, 27(3): 442-448. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603008.htmCHEN Zhipeng, LIANG Xing, ZHANG Jiehui, et al. Genesis analysis of shale reservoir overpressure of Longmaxi Formation in Zhaotong demonstration area, Dianqianbei Depression[J]. Natural Gas Geoscience, 2016, 27(3): 442-448. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603008.htm [21] 郭彤楼. 深层页岩气勘探开发进展与攻关方向[J]. 油气藏评价与开发, 2021, 11(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202101001.htmGUO Tonglou. Progress and research direction of deep shale gas exploration and development[J]. Reservoir Evaluation and Development, 2021, 11(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202101001.htm [22] 魏祥峰, 李宇平, 魏志红, 等. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制[J]. 石油实验地质, 2017, 39(2): 147-153. doi: 10.11781/sysydz201702147WEI Xiangfeng, LI Yuping, WEI Zhihong, et al. Effects of pre-servation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2017, 39(2): 147-153. doi: 10.11781/sysydz201702147 [23] 郝石生, 黄志龙. 天然气盖层实验研究及评价[J]. 沉积学报, 1991, 9(4): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199104002.htmHAO Shisheng, HUANG Zhilong. The experimental study and evaluation of roofrock of natural gas[J]. Acta Sedimentologica Sinica, 1991, 9(4): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199104002.htm [24] 陈章明, 吕延防. 泥岩盖层封闭性的确定及其与源岩排气史的匹配[J]. 大庆石油学院学报, 1990, 14(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY199002000.htmCHEN Zhangming, LV Yanfang. The determination of sealing ability of mudstone cap formation and its accouplement with history of discharge gas of source bed[J]. Journal of Daqing Petroleum Institute, 1990, 14(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY199002000.htm [25] 许怀先, 陈丽华, 万玉金, 等. 石油地质实验测试技术与应用[M]. 北京: 石油工业出版社, 2001.XU Haixian, CHEN Lihua, WAN Yujin, et al. Petroleum geolo-gical test technology and application[M]. Beijing: Petroleum Industry Press, 2001. [26] 刘伟新, 卢龙飞, 魏志红, 等. 川东南地区不同埋深五峰组—龙马溪组页岩储层微观结构特征与对比[J]. 石油实验地质, 2020, 42(3): 378-386. doi: 10.11781/sysydz202003378LIU Weixin, LU Longfei, WEI Zhihong, et al. Microstructure characteristics of Wufeng-Longmaxi shale gas reservoirs with different depth, southeastern Sichuan Basin[J]. Petroleum Geology & Expeximent, 2020, 42(3): 378-386. doi: 10.11781/sysydz202003378 [27] LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. [28] 熊亮, 庞河清, 赵勇, 等. 威荣深层页岩气储层微观孔隙结构表征及分类评价[J]. 油气藏评价与开发, 2021, 11(2): 154-163. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202102003.htmXIONG Liang, PANG Heqing, ZHAO Yong, et al. Micro pore structure characterization and classification evaluation of reservoirs in Weirong Deep Shale Gas Field[J]. Reservoir Evaluation and Development, 2021, 11(2): 154-163. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202102003.htm [29] 刘伟新, 鲍芳, 俞凌杰, 等. 川东南志留系龙马溪组页岩储层微孔隙结构及连通性研究[J]. 石油实验地质, 2016, 38(4): 453-459. doi: 10.11781/sysydz201604453LIU Weixin, BAO Fang, YU Lingjie, et al. Micro-pore structure and connectivity of the Silurian Longmaxi shales, southeastern Sichuan area[J]. Petroleum Geology & Expeximent, 2016, 38(4): 453-459. doi: 10.11781/sysydz201604453 [30] CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938. [31] 吴艳艳, 高玉巧, 陈云燕, 等. 渝东南地区五峰-龙马溪组页岩气储层孔缝发育特征及其地质意义[J]. 油气藏评价与开发, 2021, 11(1): 62-71. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202101009.htmWU Yanyan, GAO Yuqiao, CHEN Yunyan, et al. Characteristics and geological significance of pore and fracture of shale gas reservoirs in Wufeng-Longmaxi Formation, southeastern Chongqing[J]. Reservoir Evaluation and Development, 2021, 11(1): 62-71. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202101009.htm [32] 梁兴, 单长安, 张朝, 等. 昭通太阳背斜山地浅层页岩气"三维封存体系"富集成藏模式[J]. 地质学报, 2021, 95(11): 3380-3399. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202111015.htmLIANG Xing, SHAN Chang'an, ZHANG Zhao, et al. "three-dimensional closed system" accumulation model of Taiyang anticline mountain shallow shale gas in the Zhaotong demonstration area[J]. Acta Geologica Sinica, 2021, 95(11): 3380-3399. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202111015.htm [33] 郭旭升. 四川盆地涪陵平桥页岩气田五峰组—龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201901001.htmGUO Xusheng. Controlling factors on shale gas accumulations of Wufeng-Longmaxi formations in Pingqiao shale gas field in Fuling area, Sichuan Basin[J]. Natural Gas Geoscience, 2019, 30(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201901001.htm [34] JIN Zhijun, NIE Haikuan, LIU Quanyou, et al. Source and seal coupling mechanism for shale gas enrichment in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Sichuan Basin and its periphery[J]. Marine and Petroleum Geology, 2018, 97: 78-93. [35] 吴建发, 吴娟, 刘文平, 等. 页岩气成藏过程的阶段划分: 以四川盆地宁西地区五峰组—龙马溪组页岩气成藏过程为例[J]. 天然气工业, 2021, 41(1): 83-92. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101011.htmWU Jianfa, WU Juan, LIU Wenping, et al. Stage division of shale gas accumulation process: an example from the Wufeng Formation-Longmaxi Formation shale gas reservoir in the Ningxi area of the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 83-92. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101011.htm [36] 秦建中, 刘伟新, 范明, 等. 泥岩研究与盖层评价技术[J]. 石油实验地质, 2013, 35(6): 689-693. doi: 10.11781/sysydz201306689QIN Jianzhong, LIU Weixin, FAN Ming, et al. Shale research progress and achievements in seal appraisal technology[J]. Petroleum Geology & Experiment, 2013, 35(6): 689-693. doi: 10.11781/sysydz201306689 [37] 梁兴, 徐政语, 张朝, 等. 昭通太阳背斜区浅层页岩气勘探突破及其资源开发意义[J]. 石油勘探与开发, 2020, 47(1): 11-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001003.htmLIANG Xing, XU Zhengyu, ZHANG Zhao, et al. Breakthrough of shallow shale gas exploration in Taiyang anticline area and its significance for resource development in Zhaotong, Yunnan Province, China[J]. Petroleum Exploration and Development, 2020, 47(1): 11-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001003.htm