Shale gas content evaluation for deep strata and its variation: a case study of Weirong, Yongchuan gas fields in Sichuan Basin
-
摘要: 近年来我国页岩气勘探开发逐渐走向深层,但对高温高压条件下页岩吸附特征、游离气的赋存特征还不清楚,制约了深层页岩气大规模开发。以四川盆地威荣、永川地区深层页岩为研究对象,对不同有机碳含量和孔隙度的样品开展了高温高压(135 ℃、80 MPa)等温吸附实验和孔隙度实验,计算了页岩吸附气量、游离气量和总含气量的理论值,并与实际值进行对比。研究表明:①页岩吸附气含量随着压力增大逐渐增加,当压力大于40 MPa后,吸附气量增加趋于平缓,最大可达4.46 cm3/g。②页岩理论含气量随着地层压力的增加而增加,当地层压力达到80 MPa时总含气量达到最大,此时理论最大值为11.3 cm3/g;计算的游离气含量为6.8 cm3/g,吸附气含量为4.5 cm3/g,分别约占总含气量的60%和40%;游离气/吸附气比例随深度增加逐渐增加。③基于现场解吸实验,实测威页11-1井总含气量最大值为5.95 cm3/g,最小值为3.29 cm3/g,平均为4.52 cm3/g,对比理论含气量10.3 cm3/g,表明有近50%的气体在抬升过程中散失,同时一定程度上也说明了深层页岩气保存条件的复杂性,建议加强对保存条件的研究。Abstract: The exploration and development of shale gas in China are recently focusing on the deep layers. However, the occurring characteristics of shale gas under high temperature and high pressure are not clear, which imposes great restrictions to deep shale gas development on a massive scale. Taking the deep shale in Weirong and Yongchuan regions of Sichuan Basin as research objects, for core samples with different organic carbon content and porosity, the isothermal adsorption experiments and porosity testing at high temperature and high pressure (135 ℃, 80 MPa) were carried out, and the theoretical values of shale adsorption gas, free gas and total gas content and compared with actual values. Results show that: (1) The content of adsorbed gas in deep shale increases gradually with pressure growing up. When the pressure surpasses 40 MPa, the increment flattens out, making 4.46 cm3/g the maximum of adsorbed gas content. (2) The theoretical gas content of shale increases with the growing formation pressure. The total gas content reaches its maximum 11.3 cm3/g under 80 MPa, which is made up with calculated free gas with an average of 6.8 cm3/g and adsorbed gas with an average of 4.5 cm3/g, accounting for about 60% and 40% of the total gas content, [JP]respectively. The ratio of free gas versus adsorbed gas gets larger with a greater buried depth. (3) Based on field desorption experiment, the actual measurement maximum gas content of well Weiye 11-1 is 5.95cm3/g, the minimum value is 3.29cm3/g, and the average content is 4.52 cm3/g. Compared with the theoretical value of 10.3 cm3/g, the result indicates that nearly 50% of gas leaked in the process of formation uplift, displaying the complexity of the deep shale gas preservation conditions. It is recommended to strengthen research on preservation conditions.
-
Key words:
- adsorbed gas /
- free gas /
- deep shale gas /
- gas content /
- quantitative evaluation /
- Sichuan Basin
-
表 1 四川盆地威荣、永川地区页岩样品信息
Table 1. Information of shale samples in Weirong and Yongchuan regions, Sichuan Basin
岩样编号 井号 深度/m 目数 ω(TOC)/% 实验温度/℃ 压力范围/MPa 样品1 WY23-1 3 847.65 60~80 4.0 135 0~80 样品2 WY23-1 3 847.15 60~80 4.0 135 0~80 样品3 YY2 4 089.97 60~80 5.0 135 0~80 注:实验参照国家标准《页岩甲烷等温吸附测定容积法:GB/T 35210.1—2017》。 表 2 不同温压下的Z值
Table 2. Z value at different temperature and pressure
压力/MPa 温度/℃ Z值 0.5 135 0.998 1 135 0.997 2 135 0.995 4 135 0.988 8 135 0.980 12 135 0.975 18 135 0.983 24 135 0.987 30 135 1.040 40 135 1.060 50 135 1.180 65 135 1.310 80 135 1.465 表 3 四川盆地威荣地区WY11-1现场解吸气含量
Table 3. Site desorbed gas content of well WY11-1, Weirong region, Sichuan Basin
样品号 深度/
m解吸气量/
(cm3·g-1)解吸时间/
min解吸速率/
(cm3·min-1)岩心质量/
g提钻时间/
min地表暴露时间/
min样品1 3 746.35 0.874 731 3.89 3 256 460 60 样品2 3 747.09 0.826 740 3.87 3 467 460 60 样品3 3 748.25 0.924 728 4.30 3 392 460 60 样品4 3 749.07 0.663 726 2.92 3 204 460 60 样品5 3 750.30 0.676 724 2.95 3 163 460 60 样品6 3 751.45 1.027 723 5.00 3 523 460 60 样品7 3 752.65 1.001 721 4.16 3 002 460 60 样品8 3 754.34 0.920 719 3.97 3 104 460 60 样品9 3 755.60 1.290 661 6.81 3 489 390 60 样品10 3 756.73 1.211 660 5.98 3 261 390 60 -
[1] 何治亮, 聂海宽, 胡东风, 等. 深层页岩气有效开发中的地质问题: 以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报, 2020, 41(4): 379-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004003.htmHE Zhiliang, NIE Haikuan, HU Dongfeng, et al. Geological problems in the effective development of deep shale gas: a case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Sichuan Basin and its periphery[J]. ActaPetrolei Sinica, 2020, 41(4): 379-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004003.htm [2] 马新华. 非常规天然气"极限动用"开发理论与实践[J]. 石油勘探与开发, 2021, 48(2): 326-336. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202102011.htmMA Xinhua. "Extreme utilization" development theory of unconventional natural gas[J]. Petroleum Exploration and Development, 2021, 48(2): 326-336. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202102011.htm [3] 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49(1): 13-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001002.htmNIE Haikuan, HE Zhiliang, LIU Guangxiang, et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020, 49(1): 13-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001002.htm [4] 游声刚, 郭茜, 耿小烬, 等. 页岩含气量的影响因素分析及含气量测试方法[J]. 中国矿业, 2015, 24(12): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201512019.htmYOU Shenggang, GUO Qian, GENG Xiaojin, et al. Factors affecting the shale gas content and gas content testing methods[J]. China Mining Magazine, 2015, 24(12): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201512019.htm [5] 余川, 周洵, 方光建, 等. 地层温压条件下页岩吸附性能变化特征: 以渝东北地区龙马溪组为例[J]. 岩性油气藏, 2018, 30(6): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201806002.htmYU Chuan, ZHOU Xun, FANG Guangjian, et al. Adsorptivity of shale under the formation temperature and pressure: a case of Longmaxi Formation in northeastern Chongqing[J]. Lithologic Reservoirs, 2018, 30(6): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201806002.htm [6] MALE F, ISLAM A W, PATZEK T W, et al. Analysis of gas production from hydraulically fractured wells in the Haynesville shale using scaling methods[J]. Journal of Unconventional Oil and Gas Resources, 2015, 10: 11-17. doi: 10.1016/j.juogr.2015.03.001 [7] 马行陟, 柳少波, 姜林, 等. 页岩吸附气含量测定的影响因素定量分析[J]. 天然气地球科学, 2016, 27(3): 488-493. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603012.htmMA Xingzhi, LIU Shaobo, JIANG Lin, et al. Quantitative analysis on affecting factors of gas adsorption capacity measurement on the shale[J]. Natural Gas Geoscience, 2016, 27(3): 488-493. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603012.htm [8] SHTEPANI E, NOLL L A A, ELROD L WW, et al. A new regression-based method for accurate measurement of coal and shale gas content[J]. SPE Reservoir Evaluation & Engineering, 2010, 13(2): 359-364. [9] 王曦蒙, 刘洛夫, 汪洋, 等. 川南地区龙马溪组页岩高压甲烷等温吸附特征[J]. 天然气工业, 2019, 39(12): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201912006.htmWANG Ximeng, LIU Luofu, WANG Yang, et al. High-pressure isothermal methane adsorption characteristic of Longmaxi Formation shale in the southern Sichuan Basin[J]. Natural Gas Industry, 2019, 39(12): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201912006.htm [10] 李爱芬, 韩文成, 孙海, 等. 考虑多因素的页岩气吸附模型: 以川东南五峰组—龙马溪组页岩为例[J]. 煤炭学报, 2021, 46(3): 1003-1013. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202103025.htmLI Aifen, HAN Wencheng, SUN Hai, et al. An adsorption model with multiple factors for shale gas: taking the Wufeng Formation-Longmaxi Formation shale in southeast Sichuan as an example[J]. Journal of China Coal Society, 2021, 46(3): 1003-1013. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202103025.htm [11] 彭泽阳, 龙胜祥, 张永贵, 等. 适用于高温高压条件的等温吸附曲线方程[J]. 天然气地球科学, 2020, 31(6): 827-834. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202006008.htmPENG Zeyang, LONG Shengxiang, ZHANG Yonggui, et al. A new method of adsorption isotherm in high temperature and pressure[J]. Natural Gas Geoscience, 2020, 31(6): 827-834. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202006008.htm [12] 杨洪志, 赵圣贤, 刘勇, 等. 泸州区块深层页岩气富集高产主控因素[J]. 天然气工业, 2019, 39(11): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201911013.htmYANG Hongzhi, ZHAO Shengxian, LIU Yong, et al. Main controlling factors of enrichment and high-yield of deep shale gas in the Luzhou Block, southern Sichuan Basin[J]. Natural Gas Industry, 2019, 39(11): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201911013.htm [13] 刘冬冬, 郭靖, 潘占昆, 等. 页岩气藏超压演化过程: 来自四川盆地南部五峰组—龙马溪组裂缝流体包裹体的证据[J]. 天然气工业, 2021, 41(9): 12-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202109004.htmLIU Dongdong, GUO Jing, PAN Zhankun, et al. Overpressure evolution process in shale gas reservoir: evidence from the fluid inclusions in the fractures of Wufeng Formation-Longmaxi Formation in the southern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(9): 12-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202109004.htm [14] 王濡岳, 聂海宽, 胡宗全, 等. 压力演化对页岩气储层的控制作用: 以四川盆地五峰组—龙马溪组为例[J]. 天然气工业, 2020, 40(10): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202010002.htmWANG Ruyue, NIE Haikuan, HU Zongquan, et al. Controlling effect of pressure evolution on shale gas reservoirs: a case study of the Wufeng-Longmaxi Formation in the Sichuan Basin[J]. Natural Gas Industry, 2020, 40(10): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202010002.htm [15] 苗雅楠, 李相方, 王香增, 等. 页岩有机质热演化生烃成孔及其甲烷吸附机理研究进展[J]. 中国科学(物理学力学天文学), 2017, 47(11): 114604. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711005.htmMIAO Yanan, LI Xiangfang, WANG Xiangzeng, et al. Review on hydrocarbon generation, pores formation and its methane adsorption mechanism in shale kerogen[J]. SCIENTIA SINICA(Physica, Mechanica & Astronomica), 2017, 47(11): 114604. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711005.htm [16] 杨建, 詹国卫, 赵勇, 等. 川南深层页岩气超临界吸附解吸附特征研究[J]. 油气藏评价与开发, 2021, 11(2): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202102006.htmYANG Jian, ZHAN Guowei, ZHAO Yong, et al. Characteristics of supercritical adsorption and desorption of deep shale gas in South Sichuan[J]. Reservoir Evaluation and Development, 2021, 11(2): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202102006.htm [17] 张烨毓, 曹茜, 黄毅, 等. 应用高温甲烷吸附实验研究川东北地区五峰组页岩甲烷吸附能力[J]. 岩矿测试, 2020, 39(2): 188-198. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202002005.htmZHANG Yeyu, CAO Qian, HUANG Yi, et al. Application of high-temperature methane adsorption experiment to study the adsorption capacity of methane in shales from the Wufeng Formation, northeast Sichuan[J]. Rock and Mineral Analysis, 2020, 39(2): 188-198. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202002005.htm [18] 薛冰, 张金川, 杨超, 等. 页岩含气量理论图版[J]. 石油与天然气地质, 2015, 36(2): 339-346. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201502021.htmXUE Bing, ZHANG Jinchuan, YANG Chao, et al. Theoretical chart of shale gas content[J]. Oil & Gas Geology, 2015, 36(2): 339-346. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201502021.htm [19] 周尚文, 王红岩, 薛华庆, 等. 页岩含气量现场测试中损失气量的计算方法对比分析[J]. 中国科技论文, 2018, 13(21): 2453-2460. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201821010.htmZHOU Shangwen, WANG Hongyan, XUE Huaqing, et al. Comparative analysis of calculation methods for lost gas in the field-test of shale gas content[J]. China Sciencepaper, 2018, 13(21): 2453-2460. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201821010.htm [20] CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938. [21] 何家欢, 谢邦华, 钟磊, 等. 关于页岩损失气量计算方法的思考[J]. 非常规油气, 2019, 6(1): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201901006.htmHE Jiahuan, XIE Banghua, ZHONG Lei, et al. Thinking about the calculation method of shale gas loss[J]. Unconventional Oil & Gas, 2019, 6(1): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201901006.htm [22] 李东晖, 聂海宽. 一种考虑气藏特征的页岩含气量计算方法: 以四川盆地及其周缘焦页1井和彭页1井为例[J]. 石油与天然气地质, 2019, 40(6): 1324-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906016.htmLI Donghui, NIE Haikuan. A new method to calculate shale gas content based on gas reservoir characterization: a case study of wells JY 1 and PY 1 in Sichuan Basin and its surrounding areas[J]. Oil & Gas Geology, 2019, 40(6): 1324-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906016.htm [23] 刘洪林, 王红岩, 方朝合, 等. 中国南方海相页岩气超压机制及选区指标研究[J]. 地学前缘, 2016, 23(2): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602008.htmLIU Honglin, WANG Hongyan, FANG Chaohe, et al. The formation mechanism of over-pressure reservoir and target screening index of the marine shale in the South China[J]. Earth Science Frontiers, 2016, 23(2): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602008.htm [24] 李倩文, 唐令, 庞雄奇. 页岩气赋存动态演化模式及含气性定量评价[J]. 地质论评, 2020, 66(2): 457-466. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202002017.htmLI Qianwen, TANG Ling, PANG Xiongqi. Dynamic evolution model of shale gas occurrence and quantitative evaluation of gas-bearing capacity[J]. Geological Review, 2020, 66(2): 457-466. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202002017.htm [25] 赵金洲, 沈骋, 任岚, 等. 页岩储层不同赋存状态气体含气量定量预测: 以四川盆地焦石坝页岩气田为例[J]. 天然气工业, 2017, 37(4): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201704006.htmZHAO Jinzhou, SHEN Cheng, REN Lan, et al. Quantitative prediction of gas contents in different occurrence states of shale reservoirs: a case study of the Jiaoshiba shale gasfield in the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(4): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201704006.htm [26] 聂舟, 衡德, 邹源红, 等. 四川盆地长宁地区海相页岩吸附气含量演化特征: 以N201井五峰组—龙马溪组一段为例[J]. 海相油气地质, 2021, 26(1): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202101005.htmNIE Zhou, HENG De, ZOU Yuanhong, et al. Evolution of adsorbed gas content of marine shale in Changningarea, SichuanBasin: a case of Wufeng Formation-Longmaxi Member 1 in well N201[J]. Marine Origin Petroleum Geology, 2021, 26(1): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202101005.htm [27] 秦明阳, 郭建华, 何红生, 等. 四川盆地外复杂构造区页岩气地质条件及含气性特征: 以湘西北五峰组—龙马溪组为例[J]. 中南大学学报(自然科学版), 2018, 49(8): 1979-1990. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201808019.htmQIN Mingyang, GUO Jianhua, HE Hongsheng, et al. Geological conditions and gas-bearing characteristics of shale gas in complex structure area out of Sichuan basin: a case of Wufeng-Longmaxi formation in northwestern Hunan, China[J]. Journal of Central South University (Science and Technology), 2018, 49(8): 1979-1990. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201808019.htm [28] 孙川翔, 聂海宽, 熊亮, 等. 从"源盖控烃"探讨四川盆地威远地区深层页岩气田富集高产地质因素[J]. 海相油气地质, 2022, 27(2): 135-145. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202202003.htmSUN Chuanxiang, NIE Haikuan, XIONG Liang, et al. Main geolo-gical factors of enrichment and high yield of deep shale gas reservoirs in Weiyuan area, Sichuan Basin: analyzed from the perspective of source-cap controlling hydrocarbon[J]. Marine Origin Petroleum Geology, 2022, 27(2): 135-145. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202202003.htm [29] 胡凯. 川西南威远地区五峰—龙马溪组页岩储层特征及甜点分布规律研究[J]. 非常规油气, 2021, 8(5): 34-44. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ202105008.htmHU Kai. Reservoir and sweet pot distribution characteristics of shale gas in Wufeng-LongmaxiFormation, southwest of Sichuan Basin[J]. Unconventional Oil & Gas, 2021, 8(5): 34-44. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ202105008.htm [30] 杨熙雅, 刘成林, 刘文平, 等. 四川盆地富顺—永川地区龙马溪组页岩有机孔特征及其影响因素[J]. 石油与天然气地质, 2021, 42(6): 1321-1333. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106007.htmYANG Xiya, LIU Chenglin, LIU Wenping, et al. Characteristics of and factors influencing organic pores in the Lower Silurian Longmaxi Formation, Fushun-Yongchuan area, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(6): 1321-1333. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106007.htm [31] 聂海宽, 李沛, 党伟, 等. 四川盆地及周缘奥陶系—志留系深层页岩气富集特征与勘探方向[J]. 石油勘探与开发, 2022, 49(4): 648-659. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202204003.htmNIE Haikuan, LI Pei, DANG Wei, et al. Enrichment characteristics and exploration directions of deep shale gas of Ordovician-Silurian in the Sichuan Basin and its surrounding areas, China[J]. Petroleum Exploration and Development, 2022, 49(4): 648-659. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202204003.htm [32] NIE Haikuan, SUN Chuanxiang, LIU Guangxiang, et al. Dissolution pore types of the Wufeng Formation and the Longmaxi Formation in the Sichuan Basin, south China: implications for shale gas enrichment[J]. Marine and Petroleum Geology, 2019, 101: 243-251.