Molecular characteristics of source rocks in Upper Triassic Xujiahe Formation, Western Sichuan Depression, Sichuan Basin
-
摘要: 上三叠统须家河组是川西坳陷最重要的陆相烃源层系,目前对其烃源岩分子地球化学特征的研究和认识较为薄弱。通过对川西坳陷须家河组不同层段烃源岩饱和烃和芳烃化合物组成的分析,揭示了分子地球化学特征对烃源岩沉积环境和热演化特征的指示意义。须家河组二段至四段泥质烃源岩三环萜烷分布和二苯并噻吩/菲比值主体表现出湖相烃源岩的特征,相对较高的伽马蜡烷/C30藿烷比值(0.16~0.23)和9-/1-甲基菲比值(1.16~1.41)表明水体盐度相对较高。甲基菲指数(MPI1)、甲基菲分布分数(F1)、甲基二苯并噻吩分布指数(MDBI)等参数是有效的成熟度标尺,其在Ro=1.35%前后分别与成熟度表现出线性正相关和负相关。高—过成熟阶段须家河组烃源岩的C27—C29规则甾烷分布模式、“三芴”系列相对组成和甲基二苯并噻吩/甲基二苯并呋喃比值受成熟度影响较大而失真。Abstract: The Upper Triassic Xujiahe Formation (T3x) is the most important terrigenous stratum in the Western Sichuan Depression; however, it is still insufficient for the understanding of molecular compositional characteristics of its source rocks. Based on the analysis of both saturated and aromatic fractions of extracts of source rocks from different members of the Xujiahe Formation, the indication is then discussed for sedimentary environment and thermal evolution of source rocks. The distribution of tricyclic terpanes (TTs) and dibenzothiophene/phenanthrene (DBT/P) ratio of the argillaceous source rocks in 2nd to 4th members of the Xujiahe Formation mainly display the signatures of typical lacustrine source rocks, and the relatively high gammacerane/C30 hopane (0.16-0.23), as well as 9-/1-methylphenanthrene (1.16-1.41) ratios suggest relatively high salinity of water body. The parameters such as methylphenanthrene index (MPI1), methylphenanthrene distribution fraction (F1), and methyldibenzothiophene distribution index (MDBI) are effective for the evaluation of thermal maturity, and they show positively and negatively linear correlation with maturity degree before and after Ro=1.35%. The distribution pattern of C27-C29 regular steranes, relative composition of three fluorine series, and methyldibenzothiophene/methyldibenzofuran ratios for high to over-maturity T3x source rocks are distorted due to the effect of thermal maturation.
-
图 3 四川盆地川西坳陷上三叠统须家河组烃源岩Pr/nC17和Ph/nC18相关图
T3x5据参考文献[20],下同。
Figure 3. Diagram of Pr/nC17 vs. Ph/nC18 for T3x source rocks in Western Sichuan Depression, Sichuan Basin
图 4 四川盆地川西坳陷上三叠统须家河组烃源岩Pr/nC17、Ph/nC18和Pr/Ph三角图
底图据参考文献[23]。
Figure 4. Ternary diagram among Pr/nC17, Ph/nC18 and Pr/Ph for T3x source rocks in Western Sichuan Depression, Sichuan Basin
图 10 四川盆地川西坳陷上三叠统须家河组烃源岩“三芴”系列三角图
底图据参考文献[32]。
Figure 10. Ternary diagram of three-fluorene series for T3x source rocks in Western Sichuan Depression, Sichuan Basin
表 1 四川盆地川西坳陷上三叠统须家河组泥岩热解参数
Table 1. Rock-Eval parameters of T3x mudstones from Western Sichuan Depression, Sichuan Basin
构造单元 井号 深度/m 层位 S1/(mg·g-1) S2/(mg·g-1) S3/(mg·g-1) Tmax/℃ ω(TOC)/% IH/(mg·g-1) IO/(mg·g-1) 新场构造带 X856 3 454.81 T3x4 0.12 0.50 0.15 492 1.06 47 14 X856 3 460.66 T3x4 0.11 0.92 0.10 484 1.66 55 6 X856 4 722.13 T3x2 0.06 1.78 0.26 540 8.13 22 3 成都凹陷 MS1 4 584.62 T3x4 0.05 0.37 0.26 511 1.15 32 23 MS1 4 706.00 T3x3 0.04 0.64 0.25 514 1.96 33 13 MS1 4 745.00 T3x3 0.04 0.61 0.28 517 2.00 30 14 中江—回龙构造带 HL1 4 172.00 T3x2 0.12 0.76 0.32 490 1.61 47 20 大邑—安县构造带 DY1 3 882.87 T3x4 0.25 2.70 0.10 482 3.88 70 3 梓潼凹陷 MY2 3 530.00 T3x4 0.01 0.13 0.94 492 0.53 25 177 MY2 3 801.90 T3x4 0.86 18.39 0.20 484 20.53 90 1 表 2 四川盆地川西坳陷上三叠统须家河组泥岩饱和烃地球化学参数
Table 2. Geochemical parameters of saturated hydrocarbons in T3x mudstones from Western Sichuan Depression, Sichuan Basin
构造单元 井号 深度/m 层位 ω(TOC)/% Ro/% OEP CPI Pr/nC17 Ph/nC18 Pr/Ph C29ααα20S/(20S+20R) C29αββ/(αββ+ααα) C24TeT/C26TT Ts/Tm 伽马蜡烷/αβC30藿烷 αααC27/% αααC28/% αααC29/% C29/C27 新场构造带 CF563 3 509.7 T3x4 1.18 1.09 0.54 1.29 0.68 1.06 0.73 0.52 0.41 0.44 0.81 0.19 31.5 36.3 32.2 1.02 CF563 3 894.1 T3x4 2.97 1.35 0.89 1.21 0.47 0.77 0.74 0.47 0.38 0.51 0.86 0.20 36.6 30.2 33.2 0.91 FG21 3 730 T3x4 0.79 1.37 0.92 1.39 0.71 1.20 0.47 0.52 0.43 0.44 0.43 0.23 24.7 40.7 34.7 1.40 CH100 4 096 T3x4 0.71 1.66 0.42 0.84 0.79 1.38 0.55 0.53 0.45 0.46 0.84 0.18 31.0 36.0 33.0 1.06 X5 3 736 T3x4 0.74 1.38 0.94 1.08 0.89 1.42 0.59 0.48 0.41 0.48 0.75 0.20 30.9 34.3 34.8 1.13 XC26 3 666 T3x4 1.65 1.32 0.72 0.84 0.50 0.85 0.80 0.51 0.41 0.46 0.74 0.21 30.1 36.4 33.6 1.12 成都凹陷 MS1 4 312.75 T3x4 2.46 1.48 0.92 1.00 0.77 1.25 0.52 0.48 0.43 0.50 0.90 0.16 31.2 34.4 34.4 1.10 MS1 5 120 T3x3 2.28 2.25 1.04 1.24 0.52 0.79 0.41 0.51 0.41 0.46 0.93 0.19 34.4 33.4 32.2 0.94 GH2 3 924 T3x4 1.37 1.59 0.76 1.07 0.66 1.19 0.61 0.47 0.38 0.50 0.95 0.16 38.6 30.0 31.4 0.81 梓潼凹陷 MY2 3 802 T3x4 2.11 1.52 0.68 1.54 0.84 1.79 0.62 0.48 0.40 0.48 0.93 0.17 39.0 30.4 30.6 0.78 MY2 3 919 T3x4 1.94 1.55 0.90 1.47 0.61 1.29 0.44 0.51 0.41 0.49 0.93 0.19 34.9 32.5 32.6 0.93 MY2 3 528 T3x4 0.64 1.50 1.21 1.32 0.75 1.40 0.37 0.47 0.39 0.47 0.91 0.18 36.7 30.8 32.4 0.88 TS1 4 715 T3x3 1.74 2.26 1.08 0.68 0.90 0.81 0.54 0.42 0.57 0.96 0.17 33.0 33.3 33.7 1.02 TS1 5 387 T3x2 0.60 2.57 0.98 1.49 0.66 0.88 0.71 0.53 0.38 0.55 0.87 0.19 35.6 31.7 32.7 0.92 表 3 四川盆地川西坳陷上三叠统须家河组泥岩芳烃分子地球化学特征
Table 3. Molecular geochemical characteristics of aromatic hydrocarbons in T3x mudstones from Western Sichuan Depression, Sichuan Basin
构造单元 井号 深度/m 层位 MPI1 F1 DBT/Phen MDBTs/MDBFs F/% OF/% SF/% F/SF OF/SF 4-MDBT/1-MDBT MDBI 3-MCH/1-MCH 9-MP/1-MP 新场构造带 CF563 3 509.7 T3x4 1.436 0.787 0.10 4.66 58.5 6.8 34.7 1.68 0.20 30.39 0.42 6.67 1.41 CF563 3 894.1 T3x4 1.611 0.857 0.08 10.81 39.0 6.5 54.6 0.71 0.12 52.04 0.44 9.31 1.21 FG21 3 730 T3x4 1.470 0.797 0.10 10.52 42.8 5.9 51.3 0.84 0.12 19.45 0.44 7.58 1.28 CH100 4 096 T3x4 1.196 0.789 0.13 16.94 22.5 4.4 73.1 0.31 0.06 22.80 0.40 8.21 1.30 X5 3 736 T3x4 1.477 0.788 0.10 8.35 46.8 6.0 47.2 0.99 0.13 27.05 0.44 8.30 1.40 成都凹陷 MS1 4 312.75 T3x4 1.438 0.810 0.10 15.95 31.5 4.5 64.0 0.49 0.07 32.51 0.43 8.02 1.32 MS1 5 120 T3x3 1.070 0.784 0.21 39.11 18.5 1.8 79.7 0.23 0.02 21.84 0.36 6.23 1.26 梓潼凹陷 MY2 3 802 T3x4 1.459 0.791 0.09 6.13 59.1 5.0 35.9 1.65 0.14 35.96 0.42 6.94 1.35 TS1 4 715 T3x3 0.453 0.721 0.07 2.53 43.7 18.5 37.8 1.16 0.49 13.50 0.27 4.98 1.16 注:MPI1=1.5(2-MP+3-MP)/(P+1-MP+9-MP);F1=(2-MP+3-MP)/(1-MP+2-MP+3-MP+9-MP); MDBI=4-MDBT/(DBT+1-MDBT+2-MDBT+3-MDBT+4-MDBT)。 -
[1] DAI Jinxing, NI Yunyan, ZOU Caineng. Stable carbon and hydrogen isotopes of natural gases sourced from the Xujiahe Formation in the Sichuan Basin, China[J]. Organic Geochemistry, 2012, 43: 103-111. doi: 10.1016/j.orggeochem.2011.10.006 [2] DAI Jinxing, NI Yunyan, ZOU Caineng, et al. Stable carbon isotopes of alkane gases from the Xujiahe coal measures and implication for gas-source correlation in the Sichuan Basin, SW China[J]. Organic Geochemistry, 2009, 40(5): 638-646. doi: 10.1016/j.orggeochem.2009.01.012 [3] 邹才能, 陶士振, 朱如凯, 等. "连续型"气藏及其大气区形成机制与分布: 以四川盆地上三叠统须家河组煤系大气区为例[J]. 石油勘探与开发, 2009, 36(3): 307-319. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200903010.htmZOU Caineng, TAO Shizhen, ZHU Rukai, et al. Formation and distribution of "continuous" gas reservoirs and their giant gas province: a case from the Upper Triassic Xujiahe Formation giant gas province, Sichuan Basin[J]. Petroleum Exploration and Development, 2009, 36(3): 307-319. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200903010.htm [4] DAI Jinxing. Giant coal-derived gas fields and their gas sources in China[M]. Beijing: Science Press, 2016: 1-564. [5] WU Xiaoqi, LIU Quanyou, LIU Guangxiang, et al. Geochemical characteristics and genetic types of natural gas in the Xinchang gas field, Sichuan Basin, SW China[J]. Acta Geologica Sinica (English Edition), 2017, 91(6): 2200-2213. doi: 10.1111/1755-6724.13458 [6] 杨克明, 朱宏权. 川西叠覆型致密砂岩气区地质特征[J]. 石油实验地质, 2013, 35(1): 1-8. doi: 10.11781/sysydz201301001YANG Keming, ZHU Hongquan. Geological characteristics of superposed tight sandstone gas-bearing areas in western Sichuan[J]. Petroleum Geology & Experiment, 2013, 35(1): 1-8. doi: 10.11781/sysydz201301001 [7] 秦胜飞, 陶士振, 涂涛, 等. 川西坳陷天然气地球化学及成藏特征[J]. 石油勘探与开发, 2007, 34(1): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200701007.htmQIN Shengfei, TAO Shizhen, TU Tao, et al. Characteristics of natural gas geochemistry and accumulation in Western Sichuan Depression[J]. Petroleum Exploration and Development, 2007, 34(1): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200701007.htm [8] 王玮, 沈忠民, 裴森奇, 等. 致密砂岩气藏油气轻烃特征及其地质意义: 以四川盆地西北部须家河组气藏为例[J]. 石油实验地质, 2018, 40(6): 818-827. doi: 10.11781/sysydz201806818WANG Wei, SHEN Zhongmin, PEI Senqi, et al. Light hydrocarbon characteristics of petroleum in a tight sandstone gas reservoir and its geological significance: a case study of the Upper Triassic Xujiahe Formation gas reservoir in the northwestern Sichuan Basin[J]. Petroleum Geology & Experiment, 2018, 40(6): 818-827. doi: 10.11781/sysydz201806818 [9] 吴小奇, 罗开平, 王萍, 等. 川西坳陷新场气田须家河组五段流体赋存状态[J]. 石油与天然气地质, 2017, 38(6): 1068-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201706009.htmWU Xiaoqi, LUO Kaiping, WANG Ping, et al. Fluid state in the 5th member of the Upper Triassic Xujiahe Formation in the Xinchang gas field, Western Sichuan Depression in Sichuan Basin[J]. Oil & Gas Geology, 2017, 38(6): 1068-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201706009.htm [10] 吴小奇, 王萍, 潘文蕾, 等. 川西坳陷新场构造须五段地层水地球化学特征及其成因[J]. 天然气工业, 2016, 36(3): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201603006.htmWU Xiaoqi, WANG Ping, PAN Wenlei, et al. Geochemical cha-racteristics and origin of formation water in the 5th member of the Upper Triassic Xujiahe Fm in Xinchang structure, West Sichuan Depression[J]. Natural Gas Industry, 2016, 36(3): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201603006.htm [11] 林小兵, 田景春, 刘莉萍, 等. 四川盆地川西坳陷须家河组硅质碎屑颗粒溶蚀作用及机理[J]. 石油实验地质, 2019, 41(3): 404-410. doi: 10.11781/sysydz201903404LIN Xiaobing, TIAN Jingchun, LIU Liping, et al. Dissolution mechanism of siliciclastic particles in Xujiahe Formation, West Sichuan Depression, Sichuan Basin[J]. Petroleum Geology & Experiment, 2019, 41(3): 404-410. doi: 10.11781/sysydz201903404 [12] 王东燕, 曾华盛, 王津义. 四川盆地川西坳陷中段上三叠统烃源岩评价[J]. 石油实验地质, 2010, 32(2): 192-195. doi: 10.11781/sysydz201002192WANG Dongyan, ZENG Huasheng, WANG Jinyi. Evaluation on Upper Triassic hydrocarbon source rocks of Western Sichuan Depression, Sichuan Basin[J]. Petroleum Geology & Experiment, 2010, 32(2): 192-195. doi: 10.11781/sysydz201002192 [13] 江兴歌, 曾华盛, 朱建辉, 等. 川西坳陷中部上三叠统烃源岩动态演化模拟[J]. 石油与天然气地质, 2012, 33(4): 545-551. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201204010.htmJIANG Xingge, ZENG Huasheng, ZHU Jianhui, et al. Dynamic evolution simulation of the Upper Triassic source rocks in central part of Western Sichuan Depression[J]. Oil & Gas Geology, 2012, 33(4): 545-551. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201204010.htm [14] 吴小奇, 陈迎宾, 赵国伟, 等. 四川盆地川西坳陷新场气田上三叠统须家河组五段烃源岩评价[J]. 天然气地球科学, 2017, 28(11): 1714-1722. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201711011.htmWU Xiaoqi, CHEN Yingbin, ZHAO Guowei, et al. Evaluation of source rocks in the 5th member of the Upper Triassic Xujiahe Formation in the Xinchang Gasfield, the Western Sichuan Depression, Sichuan Basin[J]. Natural Gas Geoscience, 2017, 28(11): 1714-1722. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201711011.htm [15] 马晓潇, 黎茂稳, 刘鹏, 等. 江汉盆地盐间页岩中芳基类异戊间二烯烷烃特征及对页岩油勘探的意义[J]. 石油实验地质, 2020, 42(4): 575-585. doi: 10.11781/sysydz202004575MA Xiaoxiao, LI Maowen, LIU Peng, et al. Aryl isoprenoids and their significance for inter-salt shale oil exploration in the Jianghan Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 575-585. doi: 10.11781/sysydz202004575 [16] ZHANG Min, HUANG Guanghui, LI Hongbo, et al. Molecular geochemical characteristics of gas source rocks from the Upper Triassic Xujiahe Formation indicate transgression events in the Sichuan Basin[J]. Science China Earth Sciences, 2012, 55(8): 1260-1268. [17] 蔡杰, 张敏. 四川盆地上三叠统须家河组煤系气源岩芳烃地球化学特征[J]. 石油实验地质, 2013, 35(3): 325-330. doi: 10.11781/sysydz201303325CAI Jie, ZHANG Min. Geochemical characteristics of aromatic hydrocarbons of coal-bearing gas source rocks from Upper Triassic Xujiahe Formation in Sichuan Basin[J]. Petroleum Geology & Experiment, 2013, 35(3): 325-330. doi: 10.11781/sysydz201303325 [18] LI Ying, ZHU Yangming, HAO Fang, et al. Thermal evolution and applications of aromatic hydrocarbons in highly mature coal-bearing source rocks of the Upper Triassic Xujiahe Formation in the northern Sichuan Basin[J]. Science China Earth Sciences, 2015, 58(11): 1960-1969. [19] 沈忠民, 魏金花, 朱宏权, 等. 川西坳陷煤系烃源岩成熟度特征及成熟度指标对比研究[J]. 矿物岩石, 2009, 29(4): 83-88. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200904012.htmSHEN Zhongmin, WEI Jinhua, ZHU Hongquan, et al. Comparative research on maturity feature and maturity indicator of coal source rock from West Sichuan Basin Depression[J]. Journal of Mineralogy and Petrology, 2009, 29(4): 83-88. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200904012.htm [20] 吴小奇, 陈迎宾, 刘全有, 等. 川西坳陷新场气田须家河组五段烃源岩分子地球化学特征[J]. 地球科学, 2019, 44(3): 859-871. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903014.htmWU Xiaoqi, CHEN Yingbin, LIU Quanyou, et al. Molecular geoche-mical characteristics of source rocks in the 5th member of Upper Triassic Xujiahe Formation, Xinchang gas field, West Sichuan Depression[J]. Earth Science, 2019, 44(3): 859-871. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903014.htm [21] PETERS K E, MOLDOWAN J M. The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments[M]. New Jersey: Prentice Hall Inc, 1993. [22] 孙丽娜, 张中宁, 吴远东, 等. 生物标志化合物热成熟度参数演化规律及意义: 以Ⅲ型烃源岩HTHP生排烃热模拟液态烃产物为例[J]. 石油与天然气地质, 2015, 36(4): 573-580. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504007.htmSUN Li'na, ZHANG Zhongning, WU Yuandong, et al. Evolution patterns and their significances of biomarker maturity parameters: a case study on liquid hydrocarbons from type Ⅲ source rock under HTHP hydrous pyrolysis[J]. Oil & Gas Geology, 2015, 36(4): 573-580. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504007.htm [23] 王铁冠, 钟宁宁, 侯读杰, 等. 低熟油气形成机理与分布[M]. 北京: 石油工业出版社, 1995.WANG Tieguan, ZHONG Ningning, HOU Dujie, et al. Genetic mechanism and occurrence of immature hydrocarbon[M]. Beijing: Petroleum Industry Press, 1995. [24] HUANG W Y, MEINSCHEIN W G. Sterols as ecological indicators[J]. Geochimica et Cosmochimica Acta, 1979, 43(5): 739-745. [25] 包建平, 何丹, 朱翠山, 等. 北部湾盆地迈陈凹陷徐闻X3井原油地球化学特征及其成因[J]. 天然气地球科学, 2017, 28(5): 665-676. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201705001.htmBAO Jianping, HE Dan, ZHU Cuishan, et al. Geochemical characteristics and origin of a crude oil from well Xuwen X3 in the Maichen Sag, Beibuwan Basin, China[J]. Natural Gas Geoscience, 2017, 28(5): 665-676. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201705001.htm [26] SINNINGHE DAMSTÉ J S, KENIG F, KOOPMANS M P, et al. Evidence for gammacerane as an indicator of water column stratification[J]. Geochimica et Cosmochimica Acta, 1995, 59(9): 1895-1900. [27] 李伟. 四川盆地晚三叠世咸化环境的形成与沉积体系的演化特征[J]. 天然气工业, 2011, 31(9): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201109008.htmLI Wei. Formation of a saline environment and evolution of a sedimentary system in the Late Triassic reservoirs of the Sichuan Basin[J]. Natural Gas Industry, 2011, 31(9): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201109008.htm [28] 宋长玉, 金洪蕊, 刘璇, 等. 烃源岩中甲基菲的分布及对成熟度参数的影响[J]. 石油实验地质, 2007, 29(2): 183-187. doi: 10.11781/sysydz200702183SONG Changyu, JIN Hongrui, LIU Xuan, et al. Distribution of methyl phenanthrene in sediments and its impacting on maturity parameters[J]. Petroleum Geology & Experiment, 2007, 29(2): 183-187. doi: 10.11781/sysydz200702183 [29] RADKE M, WELTE D H, WILLSCH H. Geochemical study on a well in the Western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter[J]. Geochimica et Cosmochimica Acta, 1982, 46(1): 1-10. [30] KVALHEIM O M, CHRISTY A A, TELNÆS N, et al. Maturity determination of organic matter in coals using the methylphenanthrene distribution[J]. Geochimica et Cosmochimica Acta, 1987, 51(7): 1883-1888. [31] LIN Renzi, WANG Peirong. PAH in fossil fuels and their geochemical significance[J]. Journal of Southeast Asian Earth Sciences, 1991, 5(1/4): 257-262. [32] 程克明, 王铁冠, 钟宁宁. 烃源岩地球化学[M]. 北京: 科学出版社, 1995.CHENG Keming, WANG Tieguan, ZHONG Ningning. Geoche-mistry of source rocks[M]. Beijing: Science Press, 1995. [33] RADKE M, VRIEND S P, RAMANAMPISOA L R. Alkyldibenzofurans in terrestrial rocks: influence of organic facies and maturation[J]. Geochimica et Cosmochimica Acta, 2000, 64(2): 275-286. [34] 朱扬明, 顾圣啸, 李颖, 等. 四川盆地龙潭组高热演化烃源岩有机质生源及沉积环境探讨[J]. 地球化学, 2012, 41(1): 35-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201201005.htmZHU Yangming, GU Shengxiao, LI Ying, et al. Biological organic source and depositional environment of over-mature source rocks of Longtan Formation in Sichuan Basin[J]. Geochimica, 2012, 41(1): 35-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201201005.htm [35] HUGHES W B, HOLBA A G, DZOU L I P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3581-3598. [36] RADKE M, WELTE D H, WILLSCH H. Maturity parameters based on aromatic hydrocarbons: influence of the organic matter type[J]. Organic Geochemistry, 1986, 10(1/3): 51-63. [37] 魏志彬, 张大江, 张传禄, 等. 甲基二苯并噻吩分布指数(MDBI)作为烃源岩成熟度标尺的探讨[J]. 地球化学, 2001, 30(3): 242-247. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200103006.htmWEI Zhibin, ZHANG Dajiang, ZHANG Chuanlu, et al. Methyldibenzothiophenes distribution index as a tool for maturity assessments of source rocks[J]. Geochimica, 2001, 30(3): 242-247. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200103006.htm