A comparison of geochemical features of source rocks of Eocene Wenchang Formation in the deep and shallow water zones of Pearl River Mouth Basin, SE China
-
摘要: 珠江口盆地油气资源丰富,是我国海上油气勘探的热点区。古近系文昌组是盆内重要的烃源岩层之一,但对其地球化学特征研究还不够透彻,尤其是白云深水区文昌组烃源岩,因其埋藏深,岩心样品缺乏,目前研究大多基于易受钻井泥浆污染的岩屑样品,因而导致对其地球化学特征认识有限。因此,采用催化加氢热解技术从珠江口盆地深水区(主要来自珠二坳陷)和浅水区(主要来自珠一坳陷)文昌组的烃源岩干酪根结构中释放出键合烃,应用键合烃中生物标志化合物和单体烃碳同位素组成进行了精细的地球化学特征对比分析。研究结果表明,珠江口盆地文昌组烃源岩可划分为3种类型,包括中深湖相(WC-Ⅰ)、浅湖相(WC-Ⅱ)和藻类勃发的中深湖相(WC-Ⅲ)。中深湖相烃源岩(WC-Ⅰ)生物标志化合物组成具有低C304-甲基甾烷(4-Me/C29 < 0.2)和双杜松烷含量,较轻的正构烷烃单体烃碳同位素组成(-33‰~-31‰)特征;浅湖相烃源岩(WC-Ⅱ)生物标志化合物特征表现为极低C304-甲基甾烷含量(4-Me/C29均值为0.06),低至高丰度的双杜松烷(T/C30H均值为1.04),较重的正构烷烃单体烃碳同位素组成(-30‰~-27‰)特征;藻类勃发的中深湖相烃源岩(WC-Ⅲ)具有高C304-甲基甾烷含量(4-Me/C29=0.66),重的正构烷烃单体烃碳同位素组成(-25‰~-23‰)特征。其中深水区和浅水区文昌组烃源岩均发育中深湖相(WC-Ⅰ)和浅湖相(WC-Ⅱ),除此之外,浅水区文昌组还发育藻类勃发的中深湖相烃源岩(WC-Ⅲ),而深水区尚未发现该类型烃源岩。通过对比珠江口盆地不同区域文昌组烃源岩键合烃的地球化学特征,发现浅水区文昌组中深湖相烃源岩可分为两种类型,为正确认识珠江口盆地不同区域文昌组烃源岩的地球化学特征提供科学依据,有助于对该区域进行油源对比。Abstract: The Pearl River Mouth Basin (PRMB) is one of the important offshore targets for oil and gas exploration in China and has great potential of oil and gas resources. The Eocene Wenchang Formation is one of the potential source rocks in the PRMB, but its geochemical characteristics are insufficiently studied, particularly for the Wenchang Formation source rocks in deep-water area of the PRMB. Due to the deep burial condition, core samples can rarely be obtained, and most samples are drilling cuttings which are easily to be contaminated by drilling mud, which makes it difficult to directly access the geochemical characteristics of Wenchang Formation source rocks. This paper aims to compare the geochemistry of the Wenchang Formation source rocks in the deep-water and shallow-water areas of the PRMB with an improved catalytic hydropyrolysis method to release the bound hydrocarbons from kerogen macromolecules. Based on the biomarkers and carbon isotopic compositions of individual n-alkanes released, the geochemical characteristics of Wenchang Formation source rocks in deep-water (mainly from Zhu Ⅱ Depression) and shallow water areas (mainly from Zhu Ⅰ Depression) from PRMB are compared. Results indicate that the source rocks of Wenchang Formation in PRMB can be classified into three types including semi-deep to deep lacustrine (WC-Ⅰ), shallow lacustrine (WC-Ⅱ), and semi-deep to deep lacustrine with algal blooming (WC-Ⅲ). The WC-Ⅰ are characterized by low C30 4-methylsteranes (4-Me/C29 < 0.2) and bicadinanes contents, and relatively light carbon isotopic composition of individual n-alkanes (-33‰ to -31‰). The WC-Ⅱ are characterized by low 4-Me/C29 ratios (average=0.06), low to high T/C30H ratios (average=1.04), and relatively heavier carbon isotope composition of individual n-alkanes (-30‰ to -27‰). The WC-Ⅲ are characterized by high content of C30 4-methylsteranes (4-Me/C29=0.66) and heavy carbon isotope compositions of individual n-alkanes (-25‰ to -23‰). The Wenchang Formation source rocks in deep-water and shallow-water areas have semi-deep to deep lacustrine facies (WC-Ⅰ) and shallow lacustrine facies (WC-Ⅱ). In addition, the semi-deep to deep lacustrine source rocks with algal blooming (WC-Ⅲ) also developed in shallow-water areas, but no such type of source rocks were found in deep-water area. This study compared the geochemical characteristics of bound hydrocarbons in source rocks of Wenchang Formation in different regions of PRMB, and found that the semi-deep to deep lacustrine source rocks of Wenchang Formation in shallow-water area can be divided into two types. It provides a scientific basis for a better understanding of the geochemical features of source rocks in different areas of Wenchang Formation in PRMB, and is helpful for oil-source correlations in this area.
-
图 1 珠江口盆地古近系文昌组烃源岩采样井位置
据文献[24]修改。
Figure 1. Sampling wells of source rocks from Eocene Wenchang Formation, Pearl River Mouth Basin
图 3 珠江口盆地古近系文昌组氢解产物中4-Me/C29与T/C30H(a)、δ13CAv-n-alkanes与4-Me/C29 (b)、δ13C干酪根与δ13CAv-n-alkanes(c)交会图
Figure 3. Cross plots of 4-Me/C29 vs. T/C30H (a), δ13CAv-n-alkanes vs. 4-Me/C29 (b) and δ13Ckerogen vs. δ13CAv-n-alkanes(c) in hydropyrolysis products from Eocene Wenchang Formation, Pearl River Mouth Basin
表 1 珠江口盆地文昌组烃源岩样品的基本信息
Table 1. Basic information of source rock samples from Eocene Wenchang Formation, Pearl River Mouth Basin
区域 编号 井号 岩性 深度/m δ13C干酪根/‰ ω(TOC)/% S1/(mg·g-1) S2/(mg·g-1) Tmax/℃ IH/(mg·g-1) 珠二坳陷 1 LW4-1-1 泥岩岩屑 3 195~3 235 -29.2 1.15 0.12 3.31 440 288 2 LW9-1-2 泥岩岩屑 3 560~3 605 -28.6 1.09 0.10 2.28 443 208 3 LH34-6-1 泥岩岩屑 3 847~3 865 -27.4 1.12 1.37 1.82 428 163 4 LW3-2-4 泥岩岩屑 4 704~4 719 -27.0 1.19 1.02 4.13 434 347 珠一坳陷 5 LF16-6-1 泥岩岩屑 3 250~3 275 -26.0 1.51 0.60 9.00 434 596 6 PY5-8-1 泥岩岩屑 3 678~3 694 -27.1 2.17 0.11 9.06 445 418 7 HZ25-7-1 泥岩岩屑 3 855~3 865 -23.9 3.00 0.09 10.35 444 345 8 HZ21-1-18 泥岩岩屑 4 220~4 250 -27.3 0.82 0.07 1.19 448 145 9 XJ24-3s-2d 泥岩岩屑 4 444~4 450 -27.7 0.80 0.21 2.03 433 254 10 XJ24-6-1 泥岩岩屑 4 550~4 580 -27.6 1.51 0.22 2.95 452 195 表 2 珠江口盆地珠二坳陷和珠一坳陷古近系文昌组烃源岩氢解产物产率和生物标志化合物参数
Table 2. Yields and biomarker parameters of hydropyrolysis products from source rocks in Eocene Wenchang Formation, Zhu Ⅰand Ⅱ depressions, Pearl River Mouth Basin
样品编号 产率/(mg·g-1) 饱和烃/% 芳烃/% 非烃/% δ13CAV-n-alkanes/‰ CPI (nC21+nC22)/(nC27+nC28) C23TT/C30H C29H/C30H T/C30H 4-Me/C29 C27/% C28/% C29/% 22S 20S 20ββ 1 670 16.9 29.0 54.1 -32.1 1.03 1.58 0.02 1.88 0.23 0.16 43 17 40 0.40 0.05 0.16 2 529 13.8 33.8 52.5 -31.7 1.03 2.34 0.04 1.08 0.13 0.14 42 19 39 0.49 0.34 0.23 3 514 9.1 21.2 69.7 -29.1 0.96 1.56 0.16 1.10 3.17 31 23 46 0.44 0.24 0.36 4 188 6.2 38.1 55.7 -29.4 0.94 0.18 0.84 1.20 17 19 64 0.29 0.19 0.29 5 981 20.7 34.4 44.9 -28.4 1.07 0.70 0.01 1.59 0.01 0.09 42 17 41 0.31 0.08 0.12 6 682 23.6 27.0 49.4 -31.6 1.02 0.95 0.24 1.69 0.04 0.20 38 27 35 0.45 0.33 0.14 7 540 24.5 31.6 43.9 -24.4 0.99 1.33 0.07 1.48 0.75 0.66 41 16 43 0.48 0.38 0.29 8 518 7.2 26.8 66.0 -28.5 1.18 2.86 0.13 1.11 1.01 0.04 13 23 63 0.37 0.21 0.36 9 773 6.2 29.8 64.0 -28.6 0.99 0.88 0.02 1.29 0.29 0.10 16 19 64 0.37 0.33 0.24 10 603 10.7 38.3 51.0 -28.3 0.93 0.07 0.86 0.61 0.02 16 11 73 0.27 0.47 0.47 注:$ \mathrm{CPI}=\frac{\sum\limits_{i=n}^m \mathrm{C}_{2 i+1}+\sum\limits_{i=n+1}^{m+1} \mathrm{C}_{2 i+1}}{2 \sum\limits_{i=n+1}^{m+1} \mathrm{C}_{2 i}}$,n=10,m=14(据文献[34]);T/C30H=双杜松烷-T/C30藿烷(计算自m/z 412);C23TT/C30H=C23三环萜烷/C30藿烷(计算自m/z 191);C29H/C30H=C29藿烷/C30藿烷(计算自m/z 191);4-Me/C29=C304-甲基甾烷/C29甾烷(计算自m/z 217);Ci=Ci/(C27+C28+C29)ααα20R甾烷;22S=C31H-22S/(22S+22R);20S=C29-ααα20S/(ααα20S+ααα20R);20ββ=C29-αββ/(αββ+ααα)。 -
[1] 陈长民. 珠江口盆地东部石油地质及油气藏形成条件初探[J]. 中国海上油气地质, 2000, 14(2): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200002000.htmCHEN Changmin. Petroleum geology and conditions for hydrocarbon accumulation in the eastern Pearl River Mouth Basin[J]. China Offshore Oil and Gas (Geology), 2000, 14(2): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200002000.htm [2] 米立军, 柳保军, 何敏, 等. 南海北部陆缘白云深水区油气地质特征与勘探方向[J]. 中国海上油气, 2016, 28(2): 10-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201602002.htmMI Lijun, LIU Baojun, HE Min, et al. Petroleum geology characte-ristics and exploration direction in Baiyun deep water area, northern continental margin of the South China Sea[J]. China Offshore Oil and Gas, 2016, 28(2): 10-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201602002.htm [3] 熊万林, 龙祖烈, 朱俊章, 等. 阳江凹陷恩平21洼不同沉积环境烃源岩发育特征及成藏贡献[J]. 油气地质与采收率, 2021, 28(5): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202105005.htmXIONG Wanlin, LONG Zulie, ZHU Junzhang, et al. Development characteristics and accumulation contribution of source rocks in different sedimentary environments in Enping 21 Subsag of Yangjiang Sag[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(5): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202105005.htm [4] 龙祖烈, 石创, 朱俊章, 等. 珠江口盆地白云凹陷原油半开放条件下裂解成气模拟实验[J]. 石油实验地质, 2021, 43(3): 507-512. doi: 10.11781/sysydz202103507LONG Zulie, SHI Chuang, ZHU Junzhang, et al. Simulation of crude oil cracking and gas generation with semi-open condition, Baiyun Sag, Pearl River Mouth Basin[J]. Petroleum Geology & Experiment, 2021, 43(3): 507-512. doi: 10.11781/sysydz202103507 [5] 张文昭, 张厚和, 李春荣, 等. 珠江口盆地油气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3): 346-352. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202103012.htmZHANG Wenzhao, ZHANG Houhe, LI Chunrong, et al. Petroleum exploration history and enlightenment in Pearl River Mouth Basin[J]. Xinjiang Petroleum Geology, 2021, 42(3): 346-352. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202103012.htm [6] 熊万林, 龙祖烈, 朱俊章, 等. 珠江口盆地阳江凹陷不同成藏期次原油成因及混源比例分析[J]. 石油实验地质, 2021, 43(2): 315-324. doi: 10.11781/sysydz202102315XIONG Wanlin, LONG Zulie, ZHU Junzhang, et al. Origin and mixing ratio of crude oils in different charging episodes of Yangjiang Sag of Pearl River Mouth Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 315-324. doi: 10.11781/sysydz202102315 [7] 王绪诚, 陈维涛, 何叶, 等. 珠江口盆地惠西南地区古新世火山机构对有利储层的控制作用[J]. 石油实验地质, 2022, 44(3): 466-475. doi: 10.11781/sysydz202203466WANG Xucheng, CHEN Weitao, HE Ye, et al. Control of Paleocene volcanic edifice on favorable reservoirs: a case study of the southwestern Huizhou Sag, Pearl River Mouth Basin[J]. Petroleum Geology & Experiment, 2022, 44(3): 466-475. doi: 10.11781/sysydz202203466 [8] 吴宇翔, 柳保军, 张春生, 等. 珠江口盆地白云凹陷古近纪挠曲缓坡带三角洲沉积过程响应水槽模拟[J]. 石油实验地质, 2022, 44(3): 476-486. doi: 10.11781/sysydz202203476WU Yuxiang, LIU Baojun, ZHANG Chunsheng, et al. Flume simulation of response of deltaic sedimentary process to Paleogene flexural gentle slope belt in Baiyun Sag, Pearl River Mouth Basin, northern South China Sea[J]. Petroleum Geology & Experiment, 2022, 44(3): 476-486. doi: 10.11781/sysydz202203476 [9] FU Jian, CHEN Cong, LI Meijun, et al. Petroleum charging history of Neogene reservoir in the Baiyun Sag, Pearl River Mouth Basin, South China Sea[J]. Journal of Petroleum Science and Engineering, 2020, 190: 106945. doi: 10.1016/j.petrol.2020.106945 [10] LI Wenhao, ZHANG Zhihuan, LI Youchuan, et al. The effect of river-delta system on the formation of the source rocks in the Baiyun Sag, Pearl River Mouth Basin[J]. Marine and Petroleum Geology, 2016, 76: 279-289. doi: 10.1016/j.marpetgeo.2016.05.033 [11] HE Dashuang, HOU Dujie, CHEN Tao. Geochemical characteristics and analysis of crude-oil source in the deep-water area of the Baiyun Sag, South China Sea[J]. Russian Geology and Geophysics, 2018, 59(5): 499-511. doi: 10.1016/j.rgg.2018.04.004 [12] MURRAY I P, LOVE G D, SNAPE C E, et al. Comparison of covalently-bound aliphatic biomarkers released via hydropyrolysis with their solvent-extractable counterparts for a suite of Kimmeridge clays[J]. Organic Geochemistry, 1998, 29(5/7): 1487-1505. [13] PETERSEN H I, HERTLE M, SULSBRVCK H. Upper Jurassic-lowermost Cretaceous marine shale source rocks (Farsund Formation), North Sea: kerogen composition and quality and the adverse effect of oil-based mud contamination on organic geochemical analyses[J]. International Journal of Coal Geology, 2017, 173: 26-39. doi: 10.1016/j.coal.2017.02.006 [14] BJORØY M, HALL K, GILLYON P, et al. Carbon isotope variations in n-alkanes and isoprenoids of whole oils[J]. Chemical Geology, 1991, 93(1/2): 13-20. [15] LOVE G D, SNAPE C E, CARR A D, et al. Release of covalently-bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis[J]. Organic Geochemistry, 1995, 23(10): 981-986. doi: 10.1016/0146-6380(95)00075-5 [16] LOCKHART R S, MEREDITH W, LOVE G D, et al. Release of bound aliphatic biomarkers via hydropyrolysis from type Ⅱ kerogen at high maturity[J]. Organic Geochemistry, 2008, 39(8): 1119-1124. doi: 10.1016/j.orggeochem.2008.03.016 [17] 李二庭, 向宝力, 李际, 等. 甾烷和藿烷的国产X型分子筛分离制备实验研究[J]. 石油实验地质, 2021, 43(4): 713-720. doi: 10.11781/sysydz202104713LI Erting, XIANG Baoli, LI Ji, et al. Separation of steranes and hopanes by domestic X-type molecular sieves[J]. Petroleum Geology & Experiment, 2021, 43(4): 713-720. doi: 10.11781/sysydz202104713 [18] 王圣柱, 王千军, 张关龙, 等. 准噶尔盆地石炭系烃源岩发育模式及地球化学特征[J]. 油气地质与采收率, 2020, 27(4): 13-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202004003.htmWANG Shengzhu, WANG Qianjun, ZHANG Guanlong, et al. Deve-lopment mode and geochemical characteristics of Carboniferous source rocks in Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(4): 13-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202004003.htm [19] 刁帆, 王建伟, 陈晓娜, 等. 渤海湾盆地南堡凹陷高尚堡地区油源对比及高蜡油成因[J]. 石油实验地质, 2020, 42(1): 117-125. doi: 10.11781/sysydz202001117DIAO Fan, WANG Jianwei, CHEN Xiaona, et al. Correlation of oils and source rocks and genesis of high wax oils in Gaoshangpu area, Nanpu Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 117-125. doi: 10.11781/sysydz202001117 [20] 石正勇, 金芸芸, 李杭兵, 等. 春光区块白垩系稠油地球化学特征及成因分析[J]. 特种油气藏, 2020, 27(2): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202002006.htmSHI Zhengyong, JIN Yunyun, LI Hangbing, et al. Geochemical properties and genesis of Cretaceous heavy-oil in the block Chunguang[J]. Special Oil & Gas Reservoirs, 2020, 27(2): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202002006.htm [21] LIAO Yuhong, FANG Yunxin, WU Liangliang, et al. The characte-ristics of the biomarkers and δ13C of n-alkanes released from thermally altered solid bitumens at various maturities by catalytic hydropyrolysis[J]. Organic Geochemistry, 2012, 46: 56-65. doi: 10.1016/j.orggeochem.2012.01.014 [22] LOVE G D, SNAPE C E, FALLICK A E. Differences in the mode of incorporation and biogenicity of the principal aliphatic constituents of a type Ⅰ oil shale[J]. Organic Geochemistry, 1998, 28(12): 797-811. doi: 10.1016/S0146-6380(98)00050-3 [23] 朱信旭, 王秋玲, 陈键, 等. 塔里木盆地寒武系干酪根催化加氢热解产物中正构烷烃的分布与碳同位素组成特征[J]. 地球化学, 2019, 48(5): 447-457. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201905002.htmZHU Xinxu, WANG Qiuling, CHEN Jian, et al. Distribution and carbon isotopic compositions of n-alkanes from the catalytic hydropyrolysis of the Cambrian kerogen in the Tarim Basin[J]. Geochimica, 2019, 48(5): 447-457. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201905002.htm [24] JIANG Wenmin, LI Yun, YANG Chao, et al. Organic geochemistry of source rocks in the Baiyun Sag of the Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2021, 124: 104836. doi: 10.1016/j.marpetgeo.2020.104836 [25] 龙祖烈, 陈聪, 马宁, 等. 珠江口盆地深水区白云凹陷油气成因来源与成藏特征[J]. 中国海上油气, 2020, 32(4): 36-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202004004.htmLONG Zulie, CHEN Cong, MA Ning, et al. Geneses and accumulation characteristics of hydrocarbons in Baiyun Sag, deep water area of Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2020, 32(4): 36-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202004004.htm [26] ZHANG Shuichang, LIANG Digang, GONG Zaisheng, et al. Geoche-mistry of petroleum systems in the eastern Pearl River Mouth Basin: evidence for mixed oils[J]. Organic Geochemistry, 2003, 34(7): 971-991. [27] ZHENG Yijun, LIAO Yuhong, WANG Yunpeng, et al. Organic geochemical characteristics, mineralogy, petrophysical properties, and shale gas prospects of the Wufeng-Longmaxi shales in Sanquan Town of the Nanchuan District, Chongqing[J]. AAPG Bulletin, 2018, 102(11): 2239-2265. [28] 傅宁, 朱雷. 珠一坳陷惠州西凹混源油研究[J]. 中国石油勘探, 2007, 12(2): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY200702003.htmFU Ning, ZHU Lei. Research on mixed oil in western Huizhou Sag of Zhu Ⅰ Depression[J]. China Petroleum Exploration, 2007, 12(2): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY200702003.htm [29] 施和生, 朱俊章, 姜正龙, 等. 珠江口盆地珠一坳陷油气资源再评价[J]. 中国海上油气, 2009, 21(1): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200901003.htmSHI Hesheng, ZHU Junzhang, JIANG Zhenglong, et al. Hydrocarbon resources reassessment in Zhu Ⅰ Depression, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2009, 21(1): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200901003.htm [30] 朱俊章, 施和生, 何敏, 等. 珠江口盆地白云凹陷深水区LW3-1-1井天然气地球化学特征及成因探讨[J]. 天然气地球科学, 2008, 19(2): 229-233. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200802017.htmZHU Junzhang, SHI Hesheng, HE Min, et al. Origins and geoche-mical characteristics of gases in LW3-1-1 well in the deep sea region of Baiyun Sag, Pearl River Mouth Basin[J]. Natural Gas Geoscience, 2008, 19(2): 229-233. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200802017.htm [31] 张功成, 杨海长, 陈莹, 等. 白云凹陷: 珠江口盆地深水区一个巨大的富生气凹陷[J]. 天然气工业, 2014, 34(11): 11-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201411003.htmZHANG Gongcheng, YANG Haichang, CHEN Ying, et al. The Baiyun Sag: a giant rich gas-generation sag in the deepwater area of the Pearl River Mouth Basin[J]. Natural Gas Industry, 2014, 34(11): 11-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201411003.htm [32] 朱明, 张向涛, 黄玉平, 等. 珠江口盆地烃源岩特征及资源潜力[J]. 石油学报, 2019, 40(S1): 53-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1005.htmZHU Ming, ZHANG Xiangtao, HUANG Yuping, et al. Source rock characteristics and resource potential in Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019, 40(S1): 53-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1005.htm [33] 王宁, 朱庆增, 谢曼曼, 等. 尿素络合法分离—气相色谱/同位素质谱法分析土壤和植物中低含量(ppm级)正构烷烃的碳同位素[J]. 岩矿测试, 2015, 34(4): 471-479. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201504017.htmWANG Ning, ZHU Qingzeng, XIE Manman, et al. An improved urea adduction method for analyzing carbon isotope of ppm-level n-alkanes in soil and plant samples[J]. Rock and Mineral Analysis, 2015, 34(4): 471-479. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201504017.htm [34] MARZI R, TORKELSON B E, OLSON R K. A revised carbon preference index[J]. Organic Geochemistry, 1993, 20(8): 1303-1306. [35] 吴亮亮, 廖玉宏, 方允鑫, 等. 不同成熟度烃源岩的催化加氢热解与索氏抽提在生物标志物特征上的对比[J]. 科学通报, 2012, 57(32): 3067-3077. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201232013.htmWU Liangliang, LIAO Yuhong, FANG Yunxin, et al. The comparison of biomarkers released by hydropyrolysis and Soxhlet extraction from source rocks of different maturities[J]. Chinese Science Bulletin, 2013, 58(3): 373-383. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201232013.htm [36] PETERS K E, MOLDOWAN J M. The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments[M]. New Jersey: Prentice Hall, 1993. [37] GELPI E, SCHNEIDER H, MANN J, et al. Hydrocarbons of geoche-mical significance in microscopic algae[J]. Phytochemistry, 1970, 9(3): 603-612. [38] BRASSELL S C, EGLINTON G, MAXWELL J R, et al. Natural background of alkanes in the aquatic environment[M]//HUTZINGER O, VAN LELYVELD I H, ZOETEMAN B C J. Aquatic pollutants: transformation and biological effects. New York: Pergamon, 1978: 69-86. [39] BLUMER M, THOMAS D W. Phytadienes in zooplankton[J]. Science, 1965, 147(3662): 1148-1149. [40] BROOKS P W. Unusual biological marker geochemistry of oils and possible source rocks, offshore Beaufort-Mackenzie Delta, Canada[J]. Organic Geochemistry, 1986, 10(1/3): 401-406. [41] VOLMAN J K, BANKS M R, DENWER K, et al. Biomarker composition and depositional setting of Tasmanite oil shale from northern Tasmania, Australia[C]//Proceedings of the 14th International Meeting on Organic Geochemistry. Paris: [s. n. ], 1989. [42] MACKENZIE A S, LAMB N A, MAXWELL J R. Steroid hydrocarbons and the thermal history of sediments[J]. Nature, 1982, 295(5846): 223-226. [43] FARRIMOND P, BEVAN J C, BISHOP A N. Hopanoid hydrocarbon maturation by an igneous intrusion[J]. Organic Geochemistry, 1996, 25(3/4): 149-164. [44] BISHOP A N, LOVE G D, MCAULAY A D, et al. Release of kerogen-bound hopanoids by hydropyrolysis[J]. Organic Geochemistry, 1998, 29(4): 989-1001. [45] CLARK J P, PHILP R P. Geochemical characterization of evaporite and carbonate depositional environments and correlation of associated crude oils in the Black Creek Basin, Alberta[J]. Bulletin of Canadian Petroleum Geology, 1989, 37(4): 401-416. [46] EKWEOZOR C M, STRAUSZ O P. Tricyclic terpanes in the Athabasca oil sands: their geochemistry[M]//BJORØY M. Advances in Organic Geochemistry 1981. New York: Wiley, 1983: 746-766. [47] TAO Shizhen, WANG Chuanyuan, DU Jianguo, et al. Geoche-mical application of tricyclic and tetracyclic terpanes biomarkers in crude oils of NW China[J]. Marine and Petroleum Geology, 2015, 67: 460-467. [48] GRANTHAM P J. The occurence of unusual C27 and C29 sterane predominances in two types of Oman crude oil[J]. Organic Geochemistry, 1986, 9(1): 1-10. [49] MOLDOWAN J M, SEIFERT W K, GALLEGOS E J. Relationship between petroleum composition and depositional environment of petroleum source rocks[J]. AAPG Bulletin, 1985, 69(8): 1255-1268. [50] COX H C, DE LEEUW J W, SCHENCK P A, et al. Bicadinane, a C30 pentacyclic isoprenoid hydrocarbon found in crude oil[J]. Nature, 1986, 319(6051): 316-318. [51] SEIFERT W K, MOLDOWAN J M. Use of biological markers in petroleum exploration[J]. Methods in Geochemistry and Geophysics, 1986, 24: 261-290. [52] HUANG Baojia, XIAO Xianming, ZHANG Mingqiang. Geoche-mistry, grouping and origins of crude oils in the western Pearl River Mouth Basin, offshore South China Sea[J]. Organic Geochemistry, 2003, 34(7): 993-1008. [53] HU Yue, HAO Fang, ZHU Junzhang, et al. Origin and occurrence of crude oils in the Zhu1 sub-basin, Pearl River Mouth Basin, China[J]. Journal of Asian Earth Sciences, 2015, 97: 24-37. [54] BJORØY M, HALL P B, HUSTAD E, et al. Variation in stable carbon isotope ratios of individual hydrocarbons as a function of artificial maturity[J]. Organic Geochemistry, 1992, 19(1/3): 89-105. [55] MONSON K D, HAYES J M. Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty acids in Saccharomyces cerevisiae. Isotopic fractionation in lipid synthesis as evidence for peroxisomal regulation[J]. Journal of Biological Chemistry, 1982, 257(10): 5568-5575. [56] MURRAY A P, SUMMONS R E, BOREHAM C J, et al. Biomarker and n-alkane isotope profiles for Tertiary oils: relationship to source rock depositional setting[J]. Organic Geochemistry, 1994, 22(3/5): 521-542, IN5-IN6. [57] SUMMONS R E, GROSJEAN E, LOVE G D, et al. Carbon and hydrogen isotopic analysis of hydrocarbons from the South Oman Salt Basin[J]. Geochimica et Cosmochimica Acta, 2006, 70(18): A625-A625. [58] 张向涛, 朱俊章, 熊万林, 等. 番禺4洼文昌组烃源岩生物标志化合物特征与油源判识[J]. 中国海上油气, 2020, 32(4): 12-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202004002.htmZHANG Xiangtao, ZHU Junzhang, XIONG Wanlin, et al. Biomarker characteristics and oil-source discrimination of source rocks in Wenchang Formation of Panyu 4 sag[J]. China Offshore Oil and Gas, 2020, 32(4): 12-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202004002.htm [59] 李友川, 米立军, 张功成, 等. 南海北部深水区烃源岩形成和分布研究[J]. 沉积学报, 2011, 29(5): 970-979. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201105018.htmLI Youchuan, MI Lijun, ZHANG Gongcheng, et al. The formation and distribution of source rocks for deep water area in the northern of South China Sea[J]. Acta Sedimentologica Sinica, 2011, 29(5): 970-979. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201105018.htm [60] GOERICKE R, MONTOYA J P, FRY B. Physiology of isotopic fractionation in algae and cyanobacteria[M]//LAJTHA K, MICHENER R H. Stable isotopes in ecology and environmental science. Oxford: Blackwell Scientific Publications, 1994: 187-221. [61] GONÇALVES F T T. Organic and isotope geochemistry of the Early Cretaceous rift sequence in the Camamu Basin, Brazil: paleolimnological inferences and source rock models[J]. Organic Geochemistry, 2002, 33(1): 67-80.