Re-Os chronology and REE analysis of paleo-oil reservoir in high evolution areas: a case study of Banjie paleo-oil reservoir, Nanpanjiang Basin
-
摘要: 由于高演化地区传统有机指标受到较大影响,在该类地区的油源对比研究中结合REE这一无机指标,将增加其结果的准确性。此外,储层沥青Re-Os测年作为一种定量的年代学研究手段,测试结果代表意义一直存在争议。对南盘江盆地板街古油藏储层沥青进行了稀土元素地球化学分析和Re-Os测年,并将其稀土元素配分模式与区内主力烃源岩通过灰色关联法进行了对比分析。南盘江盆地板街古油藏储层沥青中稀土总量较低,轻重稀土分馏明显,呈现为弱的Ce负异常和明显的Eu负异常,表明沥青形成时处于还原环境且未经历过强烈的风化淋滤作用,稀土配分模式属于轻稀土富集右倾模式;其稀土元素配分模式曲线与区内泥盆系烃源岩相似,二者具有成因关系。Re-Os测年结果显示,板街古油藏沥青Re-Os模式年龄主要分布于(203.6±1.1)~(238.5±4.2) Ma,平均(224.8±3.3) Ma(n=7);最后一次扰动该沥青Re-Os时间体系的因素是生成沥青的过程,该模式年龄代表了板街古油藏储层沥青形成即原油裂解成气的时代。Abstract: The traditional organic index can be greatly affected in the areas with high thermal evolution degree whilst combination of REE for oil-source correlation will improve the results. In addition, Re-Os dating is a quantitative method of geochronology, but the significance of the test results is quite controversial. In this paper, REE geochemical analysis and Re-Os dating of bitumen in the Banjie paleo-oil reservoir is carried out. The REE distribution pattern of bitumen was compared with that of the main source rocks in the area using the method of grey correlation. Results show that the ΣREE of bitumen in the Banjie paleo-oil reservoir is low, and the fractionation of light and heavy REEs is obvious, showing a weak negative Ce anomaly and an obvious negative Eu anomaly, which indicates that the bitumen was formed in a reducing environment and has not experienced any strong weathering or leaching. The REE distribution mode belongs to the right-leaning mode of LREE enrichment. The REE distribution pattern curve is similar to that of Devonian source rocks in this area, indicating a genetic relationship. The results of Re-Os dating show that the Re-Os model age of bitumen in the Banjie paleo-oil reservoir ranges mainly from (203.6±1.1) Ma to (238.5±4.2) Ma, with an average of (224.8±3.3) Ma (n=7). The last factor which disturbed the Re-Os system of the bitumen is the process of bitumen generation. The model age represents the age of bitumen formation in the Banjie paleo-oil reservoir, when oil was cracked into gas.
-
图 2 南盘江盆地纳板穹隆构造地质简图
据陈远明等[36]改编。
Figure 2. Tectonic geological map of Naban dome in Nanpanjiang Basin
图 3 南盘江盆地板街古油藏沥青产状
a.古油藏采样点远景图;b.块状、散粒状沥青充填于方解石晶洞溶蚀孔和胶结方解石世代之间的孔缝之中;c.脉状、块状沥青穿插方解石脉体;d.脉状沥青充填于生物碎屑灰岩的溶蚀裂缝之中;e.沥青充填于生物碎屑灰岩溶蚀孔洞之中;f.与沥青共生的方解石脉体;g.不规则状沥青穿插于方解石之中;h.沥青圆形气孔中充填方解石颗粒;i.散点状半自形黄铁矿分布于脉状沥青之中;j.半自形黄铁矿充填于不规则粒状沥青之中;Cc代表方解石,bit代表沥青,Pr代表黄铁矿
Figure 3. Occurrence of bitumen in Banjie paleo-oil reservoir, Nanpanjiang Basin
表 1 南盘江盆地板街古油藏样品沥青稀土元素含量
Table 1. REE of bitumen from Banjie paleo-oil reservoir, Nanpanjiang Basin
参数 bqs-2 bqs-4 bqs-5 bqs-6 bqs-7 bqs-8 bqs-9 xt-2 均值 La/10-6 0.42 0.24 0.62 10.70 1.85 1.86 0.33 2.82 2.36 Ce/10-6 0.59 0.36 0.85 14.60 2.19 2.23 0.44 4.22 3.18 Pr/10-6 0.07 0.06 0.17 1.75 0.21 0.32 0.08 0.44 0.39 Nd/10-6 0.30 0.28 0.89 6.54 0.76 1.22 0.40 1.77 1.52 Sm/10-6 0.06 0.07 0.22 0.64 0.08 0.19 0.09 0.27 0.20 Eu/10-6 0.01 0.02 0.05 0.07 0.01 0.04 0.03 0.05 0.04 Gd/10-6 0.08 0.10 0.29 0.42 0.07 0.20 0.13 0.30 0.20 Tb/10-6 0.01 0.01 0.05 0.07 0.01 0.03 0.02 0.05 0.03 Dy/10-6 0.09 0.10 0.32 0.45 0.06 0.22 0.14 0.33 0.21 Ho/10-6 0.02 0.02 0.07 0.11 0.01 0.05 0.03 0.08 0.05 Er/10-6 0.07 0.06 0.20 0.39 0.04 0.16 0.09 0.23 0.15 Tm/10-6 0.01 0.01 0.03 0.06 0.01 0.02 0.01 0.04 0.02 Yb/10-6 0.06 0.05 0.18 0.41 0.04 0.16 0.07 0.23 0.15 Lu/10-6 0.01 0.01 0.02 0.06 0.01 0.02 0.01 0.04 0.02 ΣREE/10-6 1.81 1.39 3.95 36.27 5.35 6.72 1.86 10.86 8.53 LREE/10-6 1.45 1.02 2.80 34.30 5.10 5.86 1.36 9.58 7.68 HREE/10-6 0.36 0.37 1.15 1.97 0.25 0.86 0.50 1.28 0.84 LREE/HREE 4.10 2.77 2.43 17.37 20.59 6.86 2.75 7.48 8.04 LaN/YbN 5.07 3.17 2.51 18.86 33.85 8.61 3.29 8.87 10.53 δEu/10-6 0.62 0.62 0.65 0.38 0.44 0.66 0.79 0.57 0.59 δCe/10-6 0.77 0.75 0.62 0.75 0.72 0.65 0.65 0.83 0.72 表 2 南盘江盆地板街古油藏沥青Re-Os测试结果
Table 2. Re-Os test results of bitumen from Banjie paleo-oil reservoir, Nanpanjiang Basin
样号 187Re/188Os 187Os/188Os 普通Os/(ng·g-1) 187Os/(ng·g-1) Re/ (ng·g-1) 模式年龄/Ma 测定值 1σ 测定值 1σ 测定值 1σ 测定值 1σ 测定值 1σ 测定值 1σ bqs-2 720 26 2.807 0.033 0.583 0.020 0.210 5 0.004 8 89.20 1.00 226.0 5.2 bqs-4 763 15 2.960 0.020 1.073 0.019 0.404 0 0.004 0 173.89 1.34 222.4 2.1 bqs-5 1 402 38 2.578 0.040 0.940 0.024 0.308 0 0.005 0 279.90 2.90 105.4 1.7 bqs-6 711 35 2.641 0.052 0.815 0.039 0.290 9 0.009 5 123.10 1.40 226.2 7.4 bqs-7 754 12 2.720 0.030 0.621 0.009 0.212 0 0.001 0 99.55 0.67 203.6 1.1 bqs-8 678 22 2.700 0.020 0.991 0.031 0.337 0 0.004 0 142.67 1.68 226.3 2.8 bqs-9 695 12 2.780 0.010 0.958 0.009 0.341 0 0.003 0 141.43 1.98 230.9 1.9 xt-2 535 18 2.650 0.040 0.786 0.023 0.222 0 0.004 0 89.28 1.29 238.5 4.2 表 3 南盘江盆地板街古油藏沥青与可能烃源岩稀土元素质量分数对比
Table 3. REE correlation of bitumen and source rock from Banjie paleo-oil reservoir, Nanpanjiang Basin
稀土元素 稀土质量分数/10-6 板街古油藏沥青 泥盆系罗富组碳质泥岩 泥盆系火烘组碳质泥岩 二叠系龙潭组煤系烃源岩 二叠系茅口组灰岩 La 2.36 39.60 55.66 85.81 0.722 Ce 3.18 66.70 99.79 172.88 1.320 Pr 0.39 8.10 12.07 21.48 0.133 Nd 1.52 30.90 45.44 82.85 0.524 Sm 0.20 5.10 7.41 15.41 0.082 Eu 0.04 1.00 1.30 4.04 0.036 Gd 0.20 5.38 5.97 14.32 0.190 Tb 0.03 0.87 1.06 2.36 0.025 Dy 0.21 5.40 5.92 12.58 0.155 Ho 0.05 1.15 1.17 2.30 0.031 Er 0.15 3.41 3.41 6.17 0.080 Tm 0.02 0.50 0.58 0.85 0.011 Yb 0.15 3.17 3.64 5.09 0.054 Lu 0.02 0.42 0.51 0.76 0.005 ΣREE 8.53 171.70 243.93 426.90 3.368 数据来源 实测 文献[45] 文献[35] 文献[46] 文献[47] -
[1] MAGOON L B. Petroleum system: status of research and methods, 1992[R]. Alexandria: Geological Survey, 1992. [2] MOLDOWAN J M, SEIFERT W K, GALLEGOS E J. Relationship between petroleum composition and depositional environment of petroleum source rocks[J]. AAPG Bulletin, 1985, 69(8): 1255-1268. [3] 王启军, 陈建渝. 油气地球化学[M]. 武汉: 中国地质大学出版社, 1988: 280-290.WANG Qijun, CHEN Jianyu. Petroleum geochemistry[M]. Wuhan: China University of Geosciences Press, 1988: 280-290. [4] 万涛, 张洪安, 张宝君, 等. C29重排谷甾烷在油源对比研究中的应用: 以银额盆地查干凹陷为例[J]. 断块油气田, 2021, (2): 173-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102007.htmWAN Tao, ZHANG Hongan, ZHANG Baojun, et al. The application of C29 rearranged sitostane in oil source correlation research: taking Chagan Depression of Yingen-Ejinaqi Basin for example[J]. Fault-Block Oil and Gas Field, 2021, (2): 173-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102007.htm [5] 施继锡, 余孝颖, 王华云. 古油藏、沥青及沥青包裹体在金属成矿研究中的应用[J]. 矿物学报, 1995, 15(2): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199502000.htmSHI Jixi, YU Xiaoying, WANG Huayun. The role of ancient oil reservoirs, bitumens and bitumen inclusions in metallogenetic research[J]. Acta Mineralogica Sinica, 1995, 15(2): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199502000.htm [6] 王守德, 郑冰, 蔡立国. 中国南方古油藏与油气评价[J]. 海相油气地质, 1997, 2(1): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ199701014.htmWANG Shoude, ZHENG Bing, CAI Liguo. The destroyed oil pools in South China and hydrocarbon prospecting[J]. Marine Origin Petroleum Geology, 1997, 2(1): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ199701014.htm [7] 梁霄, 吴亮亮, 李亚丁, 等. 川西坳陷天井山古油藏油源判识及其与深层油气成藏关系厘定[J]. 石油实验地质, 2021, 43(1): 96-111. doi: 10.11781/sysydz202101096LIANG Xiao, WU Liangliang, LI Yading, et al. Oil source correlation and its relationship with deeply buried hydrocarbon accumulations in Tianjingshan Paleo-uplift area, northern segment of Western Sichuan Depression[J]. Petroleum Geology & Experiment, 2021, 43(1): 96-111. doi: 10.11781/sysydz202101096 [8] 滇黔桂石油地质志编写组. 中国石油地质志. 卷十一, 滇黔桂油气区[M]. 北京: 石油工业出版社, 1992.Compilation Group of Yunnan Guizhou Guangxi Petroleum Geology. Petroleum geology of China. Volume 11, Dian-Qian-Gui oil and gas region[M]. Beijing: Petroleum Industry Press, 1992. [9] 赵孟军, 张水昌, 赵陵, 等. 南盘江盆地古油藏沥青地球化学特征及成因[J]. 地质学报, 2006, 80(6): 893-901. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200606011.htmZHAO Mengjun, ZHANG Shuichang, ZHAO Ling, et al. Geochemistry and genesis of bitumen in paleo-oil reservoir in the Nanpanjiang Basin, China[J]. Acta Geologica Sinica, 2006, 80(6): 893-901. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200606011.htm [10] 杨惠民, 刘炳温, 邓宗淮, 等. 滇黔桂海相碳酸盐岩地区最佳油气保存单元的评价与选择[M]. 贵阳: 贵州科技出版社, 1999: 98-125.YANG Huimin, LIU Bingwen, DENG Zonghuai, et al. Evaluation and selection of the best hydrocarbon preservation units in Dian-Qian-Gui marine carbonate area[M]. Guiyang: Guizhou Science and Technology Press, 1999: 98-125. [11] 赵孟军, 张水昌, 赵陵, 等. 南盘江盆地主要烃源岩热演化史及油气生成史[J]. 石油实验地质, 2006, 28(3): 271-275. doi: 10.11781/sysydz200603271ZHAO Mengjun, ZHANG Shuichang, ZHAO Ling, et al. The thermal evolution history and oil and gas generation history of main source rocks in the Nanpanjiang Basin[J]. Petroleum Geology & Experiment, 2006, 28(3): 271-275. doi: 10.11781/sysydz200603271 [12] LIAO Yuhong, FANG Yunxin, WU Liangliang, et al. The source of highly overmature solid bitumens in the Permian coral reef paleo-reservoirs of the Nanpanjiang Depression[J]. Marine and Petroleum Geology, 2015, 59: 527-534. doi: 10.1016/j.marpetgeo.2014.10.008 [13] 张同伟, 王先彬, 陈践发, 等. 天然气运移的气体组分的地球化学示踪[J]. 沉积学报, 1999, 17(4): 627-632. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199904019.htmZHANG Tongwei, WANG Xianbin, CHEN Jianfa, et al. Chemical composition of gases as a geochemical tracer of natural gas migration[J]. Acta Sedimentologica Sinica, 1999, 17(4): 627-632. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199904019.htm [14] 梁狄刚, 陈建平. 中国南方高、过成熟区海相油源对比问题[J]. 石油勘探与开发, 2005, 32(2): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200502001.htmLIANG Digang, CHEN Jianping. Oil-source correlations for high and over matured marine source rocks in South China[J]. Petroleum Exploration and Development, 2005, 32(2): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200502001.htm [15] TAYLOR S R, MCLENNAN S M. The continental crust: its composition and evolution[M]. Oxford: Blackwell, 1985: 5-90. [16] 金强, 田海芹, 戴俊生. 微量元素组成在固体沥青—源岩对比中的应用[J]. 石油实验地质, 2001, 23(3): 285-290. doi: 10.11781/sysydz200103285JIN Qiang, TIAN Haiqin, DAI Junsheng. Application of microelement composition to the correlation of solid bitumen with source rocks[J]. Petroleum Geology & Experiment, 2001, 23(3): 285-290. doi: 10.11781/sysydz200103285 [17] 张殿伟, 刘文汇, 高波, 等. 稀土元素灰色关联法用于南方高演化油源示踪[J]. 石油学报, 2012, 33(S1): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2012S1018.htmZHANG Dianwei, LIU Wenhui, GAO Bo, et al. Application of REE-based gray-correlation analysis method to trace oil sources of high evolution degrees in South China[J]. Acta Petrolei Sinica, 2012, 33(S1): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2012S1018.htm [18] 杨守业, 李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展, 1999, 14(2): 164-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ902.009.htmYANG Shouye, LI Congxian. Research progress in REE tracer for sediment source[J]. Advance in Earth Sciences, 1999, 14(2): 164-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ902.009.htm [19] 王飞宇, 金之钧, 吕修祥, 等. 含油气盆地成藏期分析理论和新方法[J]. 地球科学进展, 2002, 17(5): 754-762. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200205020.htmWANG Feiyu, JIN Zhijun, LV Xiuxiang, et al. Timing of petroleum accumulation: theory and new methods[J]. Advance in Earth Sciences, 2002, 17(5): 754-762. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200205020.htm [20] 赵靖舟. 油气成藏年代学研究进展及发展趋势[J]. 地球科学进展, 2002, 17(3): 378-383. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200203013.htmZHAO Jingzhou. Geochronology of petroleum accumulation: new advances and the future trend[J]. Advance in Earth Sciences, 2002, 17(3): 378-383. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200203013.htm [21] 马安来, 张水昌, 张大江, 等. 油气成藏期研究新进展[J]. 石油与天然气地质, 2005, 26(3): 271-276. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200503003.htmMA Anlai, ZHANG Shuichang, ZHANG Dajiang, et al. New advancement in study of reservoiring period[J]. Oil & Gas Geology, 2005, 26(3): 271-276. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200503003.htm [22] 李真, 王选策, 刘可禹, 等. 油气藏铼—锇同位素定年的进展与挑战[J]. 石油学报, 2017, 38(3): 297-306. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201703006.htmLI Zhen, WANG Xuance, LIU Keyu, et al. Rhenium-osmium geochronology in dating petroleum systems: progress and challenges[J]. Acta Petrolei Sinica, 2017, 38(3): 297-306. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201703006.htm [23] 武鲁亚, 金之钧, 储著银, 等. 富有机质样品Re-Os同位素定年实验方法[J]. 石油实验地质, 2021, 43(3): 513-523. doi: 10.11781/sysydz202103513WU Luya, JIN Zhijun, CHU Zhuyin, et al. Re-Os isotopic dating procedures for organic-rich samples[J]. Petroleum Geology & Experiment, 2021, 43(3): 513-523. doi: 10.11781/sysydz202103513 [24] SELBY D, CREASER R A, FOWLER M G. Re-Os elemental and isotopic systematics in crude oils[J]. Geochimica et Cosmochimica Acta, 2007, 71(2): 378-386. [25] 夏文臣, 雷建喜, 周杰, 等. 黔桂地区海西—印支阶段的构造古地理演化及沉积盆地的时空组合[J]. 地球科学, 1991, 16(5): 477-488. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199105000.htmXIA Wenchen, LEI Jianxi, ZHOU Jie, et al. The tectono-palaeogeographic evolution and time-space association of sedimentary basins of Guizhou and Guangxi provinces in Hercynian-Indosinian stage[J]. Earth Science, 1991, 16(5): 477-488. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199105000.htm [26] 吴诒, 龚一鸣, 杜远生. 华南泥盆纪层序地层及海平面变化[M]. 武汉: 中国地质大学出版社, 1997.WU Yi, GONG Yiming, DU Yuansheng. Devonian sequence strati-graphy and sea level change of South China[M]. Wuhan: China University of Geosciences Press, 1997. [27] 刘特民, 刘炳温, 陈国栋, 等. 南盘江盆地构造演化与油气保存区划分[J]. 天然气工业, 2001, 21(1): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200101003.htmLIU Temin, LIU Bingwen, CHEN Guodong, et al. Tectonic evolution and hydrocarbon preservation region division in Nanpanjiang Basin[J]. Natural Gas Industry, 2001, 21(1): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200101003.htm [28] 徐云俊, 赵宗举, 俞广. 南盘江坳陷油气系统分析[J]. 海相油气地质, 2001, 6(2): 13-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200102005.htmXU Yunjun, ZHAO Zongju, YU Guang. The petroleum system in Nanpanjiang Depression[J]. Marine Origin Petroleum Geology, 2001, 6(2): 13-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200102005.htm [29] 赖生华, 陈洪德, 余谦. 南盘江坳陷二叠系层序地层格架及古地理环境[J]. 沉积与特提斯地质, 2004, 24(3): 80-89. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200403012.htmLAI Shenghua, CHEN Hongde, YU Qian. Sequence stratigraphic framework and palaeogeographic environments of the Permian strata in the Nanpanjiang Depression, Guangxi[J]. Sedimentary Geology and Tethyan Geology, 2004, 24(3): 80-89. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200403012.htm [30] 王圣柱. 南盘江坳陷晚古生代碳酸盐岩储层特征及评价[J]. 海洋地质与第四纪地质, 2013, 33(1): 121-127. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201301019.htmWANG Shengzhu. Characteristics and quality assessment of Late Paleozoic carbonate reservoirs in Nanpanjiang Depression[J]. Marine Geology & Quaternary Geology, 2013, 33(1): 121-127. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201301019.htm [31] 秦建华, 吴应林, 颜仰基, 等. 南盘江盆地海西—印支期沉积构造演化[J]. 地质学报, 1996, 70(2): 99-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199602000.htmQIN Jianhua, WU Yinglin, YAN Yangji, et al. Hercynian-Indosinian sedimentary-tectonic evolution of the Nanpanjiang Basin[J]. Acta Geologica Sinica, 1996, 70(2): 99-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199602000.htm [32] 韦宝东, 盘鹏慧. 南盘江坳陷烃源岩再认识[J]. 南方油气, 2005, 18(3): 7-8.WEI Baodong, PAN Penghui. Re-consideration on hydrocarbon source conditions in Nanpanjiang Sag[J]. Southern China Oil & Gas, 2005, 18(3): 7-8. [33] 刘磊. 南盘江坳陷上古生界古油藏特征及油气成藏规律[J]. 内蒙古石油化工, 2010, 36(15): 113-116. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201015046.htmLIU Lei. The character of paleo-oil pools and reservoiring laws in Upper Palaeozoic, Nanpanjiang Depression[J]. Inner Mongolia Petrochemical Industry, 2010, 36(15): 113-116. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201015046.htm [34] 周明辉. 南盘江坳陷油气系统研究[J]. 云南地质, 1999, 18(3): 248-265. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD199903003.htmZHOU Minghui. A study on the petroleum system of Nanpanjiang Sag[J]. Yunnan Geology, 1999, 18(3): 248-265. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD199903003.htm [35] CHENG Yong, HU Yuzhao, WANG Di, et al. Oil-source rock analysis and metallogenic significance of the palaeo-oil reservoir in the Qinglong antimony deposit, South China[J]. Ore Geology Reviews, 2021, 137: 104281. [36] 陈远明, 张爱华, 李建全. 册亨板其金矿地球化学特征及其找矿意义[J]. 贵州地质, 1987(4): 488-496. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ198704011.htmCHEN Yuanming, ZHANG Aihua, LI Jianquan. The geological features of Banqi all-ore deposit in Ceheng county and its ore-finding significance[J]. Guizhou Geology, 1987(4): 488-496. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ198704011.htm [37] 徐仕海. 黔桂地区古生界储层流体与成藏成矿的关系研究[D]. 成都: 成都理工大学, 2007.XU Shihai. Study on the relationship between Palaeozoic reservoir fluid and accumulation and mineralization in Guizhou and Guangxi area[D]. Chengdu: Chengdu University of Technology, 2007. [38] 刘培初, 刘玉胜, 赵芳. 南丹大厂、册亨板街生物礁古油藏调研与油气系统研究[R]. 贵阳: 滇黔桂石油勘探局勘探开发科学院贵州石油地质科研所, 1998.LIU Peichu, LIU Yusheng, ZHAO Fang. Study on reef-type paleo-oil reservoirs and oil-gas system in Nandan Dachang and Ceheng Banjie[R]. Guiyang: Guizhou Institute of Petroleum Geology, Academy of Exploration and Development, Dian-Qian-Gui Petroleum Exploration Bureau, 1998. [39] 靳晓野, 李建威, HOFSTRA A, 等. 黔西南卡林型金矿床与区域古油藏的关系: 来自流体包裹体气相组成和沥青拉曼光谱特征的证据[J]. 岩石学报, 2016, 32(11): 3295-3311. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201611005.htmJIN Xiaoye, LI Jianwei, HOFSTRA A, et al. Relationship between Carlin-type gold deposits and paleo-petroleum reservoirs in SW Guizhou, China: evidence from gas compositions of fluid inclusions and Raman spectroscopic characteristics of bitumen[J]. Acta Petrologica Sinica, 2016, 32(11): 3295-3311. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201611005.htm [40] POTTS P J, KANE J S. International association of geoanalysts certificate of analysis: certified reference material OU-6 (Penrhyn Slate)[J]. Geostandards and Geoanalytical Research, 2005, 29(2): 233-236. [41] THOMPSON M, POTTS P J, KANE J S, et al. GeoPT5. An international proficiency test for analytical geochemistry laboratories—report on round 5[J]. Geostandards Newsletter, 2000, 24(1): E1-E28. [42] 孙承兴, 王世杰, 季宏兵. 碳酸盐岩风化成土过程中REE超常富集及Ce强烈亏损的地球化学机理[J]. 地球化学, 2002, 31(2): 119-128. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200202002.htmSUN Chengxing, WANG Shijie, JI Hongbing. Formation mechanism of the superhigh concentration of REE and the strong negative Ce anomalies in the carbonate rock weathering profiles in Guizhou Province, China[J]. Geochimica, 2002, 31(2): 119-128. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200202002.htm [43] GE Xiang, SELBY D, LIU Junjie, et al. Genetic relationship between hydrocarbon system evolution and Carlin-type gold mineralization: insights from Re-Os pyrobitumen and pyrite geochronology in the Nanpanjiang Basin, South China[J]. Chemical Geology, 2021, 559: 119953. [44] 傅立. 灰色系统理论及其应用[M]. 北京: 科学技术文献出版社, 1992: 185-186.FU Li. Grey system theory and its application[M]. Beijing: Scientific and Technical Documentation Press, 1992: 185-186. [45] 成永生, 黄惠明. 广西大厂矿田泥盆系地层地球化学及其成矿指示[J]. 中国有色金属学报, 2013, 23(9): 2649-2658. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201309037.htmCHENG Yongsheng, HUANG Huiming. Geochemical characte-ristics and mineralization indication of Devonian strata in Dachang ore field, Guangxi[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(9): 2649-2658. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201309037.htm [46] 田利, 谢红东, 张学东. 贵州盘县土城向斜南西翼二叠系龙潭组地球化学特征及意义[J]. 中国煤炭地质, 2014, 26(7): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201407005.htmTIAN Li, XIE Hongdong, ZHANG Xuedong. Permian Longtan Formation geochemical characteristics and significance in southwest Limb of Tucheng syncline, Panxian, Guizhou[J]. Coal Geology of China, 2014, 26(7): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201407005.htm [47] 黄建国, 李虎杰, 李文杰, 等. 贵州戈塘金矿含矿岩系元素地球化学特征[J]. 中国地质, 2012, 39(5): 1318-1326. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201205018.htmHUANG Jianguo, LI Hujie, LI Wenjie, et al. Element geochemistry of ore-bearing rock series in the Getang gold deposit, Guizhou Province[J]. Geology in China, 2012, 39(5): 1318-1326. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201205018.htm [48] SELBY D, CREASER R A. Direct radiometric dating of hydrocarbon deposits using rhenium-osmium isotopes[J]. Science, 2005, 308(5726): 1293-1295. [49] SELBY D, CREASER R A. Direct radiometric dating of the Devonian-Mississippian time-scale boundary using the Re-Os black shale geochronometer[J]. Geology, 2005, 33(7): 545-548. [50] LILLIS P G, SELBY D. Evaluation of the rhenium-osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA[J]. Geochimica et Cosmochi-mica Acta, 2013, 118: 312-330. [51] 李超, 屈文俊, 王登红, 等. 富有机质地质样品Re-Os同位素体系研究进展[J]. 岩石矿物学杂志, 2010, 29(4): 421-430. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201004008.htmLI Chao, QU Wenjun, WANG Denghong, et al. Advances in the study of the Re-Os isotopic system of organic-rich samples[J]. Acta Petrologica et Mineralogica, 2010, 29(4): 421-430. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201004008.htm [52] RAVIZZA G, TUREKIAN K K. Application of the 187Re-187Os system to black shale geochronometry[J]. Geochimica et Cosmochimica Acta, 1989, 53(12): 3257-3262. [53] COHEN A S, COE A L, BARTLETT J M, et al. Precise Re-Os ages of organic-rich mudrocks and the Os isotope composition of Jurassic seawater[J]. Earth and Planetary Science Letters, 1999, 167(3/4): 159-173. [54] CREASER R A, SANNIGRAHI P, CHACKO T, et al. Further evaluation of the Re-Os geochronometer in organic-rich sedimentary rocks: a test of hydrocarbon maturation effects in the Exshaw Formation, Western Canada Sedimentary Basin[J]. Geochimica et Cosmochimica Acta, 2002, 66(19): 3441-3452. [55] JAFFE L A, PEUCKER-EHRENBRINK B, PETSCH S T. Mobility of rhenium, platinum group elements and organic carbon during black shale weathering[J]. Earth and Planetary Science Letters, 2002, 198(3/4): 339-353. [56] FINLAY A J, SELBY D, OSBORNE M J, et al. Fault-charged mantle-fluid contamination of United Kingdom North Sea oils: insights from Re-Os isotopes[J]. Geology, 2010, 38(11): 979-982. [57] ROONEY A D, CHEW D M, SELBY D. Re-Os geochronology of the Neoproterozoic-Cambrian Dalradian Supergroup of Scotland and Ireland: implications for Neoproterozoic stratigraphy, glaciations and Re-Os systematics[J]. Precambrian Research, 2011, 185(3/4): 202-214. [58] SPEIGHT J G. The chemistry and technology of petroleum[M]. New York: M. Dekker, 1980.