Function of aromatic compounds as indicators in laboratory experiments of heavy oil with fire flooding
-
摘要: 火驱是否实现高温氧化是评价稠油油藏火驱开发效果的技术难点之一,为了认清火驱开发过程中原油化学性质的变化规律,采用室内三维物理模型开展了稠油火驱实验,并对火驱高温氧化后的原油开展芳烃气相色谱—质谱方面的研究。火驱后原油中萘系列、菲系列以及稠环芳烃相对含量增加,三芳甾烷相对含量降低;火驱过程中萘系列化合物与菲系列化合物均容易发生脱甲基、甲基迁移以及甲基取代反应,并且β构型萘与菲化合物的热稳定性要明显好于α构型;由于4-甲基二苯并噻吩与1-甲基二苯并噻吩热稳定性的差异,可以用其相对含量的变化和谱图分布特征判断火驱是否高温氧化;稠环芳烃中蒽可以作为火驱高温氧化的标志物,苝/苯并[e]芘、荧蒽/芘、蒽/菲比值的变化也是指示火驱高温氧化的良好指标。原油中芳烃化合物的变化特征与特征性标志物可以作为火驱过程中指示燃烧状态的良好指标,为稠油火驱燃烧状态的判识提供支持。Abstract: Identifying whether high-temperature oxidation is realized in fire flooding has become one of the technical difficulties in evaluating the effect of fire flooding for heavy oil reservoirs. In order to study how the chemical properties of crude oil varied during fire flooding, a series of heavy oil fire flooding laboratory experiments were carried out using a three-dimensional physical model, and the gas chromatography-mass spectrometry of aromatics were performed for the crude oil before and after high-temperature oxidation during fire flooding. Results show that after fire flooding, the relative contents of naphthalenes, phenanthrenes and polycyclic aromatic hydrocarbons in the crude oil sample increased, while the relative content of tri-aromatic steroids decreased. During fire flooding, naphthalenes and phenanthrenes were all prone to demethylation, methyl migration and methyl substitution, showing significantly higher thermal stabilities in β-naphthalenes and β-phenanthrenes relative to α-naphthalenes and α-phenanthrenes. Due to the difference in thermal stability between 4-methyldibenzothiophene and 1-methyldibenzothiophene, the high-temperature oxidation in fire flooding could be identified according to the changes in their relative contents and the distribution characteristics of their spectra. Anthracene in polycyclic aromatic hydrocarbons could be used as a marker of high-temperature oxidation in fire flooding, while the changes in perylene/benzo(e)pyrene, fluoranthene/pyrene and anthracene/phenanthrene ratios were also good indicators for high-temperature oxidation in fire flooding. As observed from these findings, it can thus be concluded that the variation characteristics and characteristic markers of aromatic compounds in crude oil are good indicators for combustion state during fire flooding, providing favorable support for the identification of combustion state in heavy oil fire flooding.
-
Key words:
- heavy oil /
- fire flooding /
- burning status /
- high temperature oxidation /
- GC-MS /
- aromatic hydrocarbons
-
表 1 火驱前后原油物性与族组分变化特征
Table 1. Physical parameters and group composition of crude oil before and after fire flooding
原油类型 50 ℃黏度/(mPa·s) 族组分/% 饱和烃 芳烃 非烃 沥青质 火驱前 23 168.1 14.57 12.94 39.30 33.19 火驱后 503.1 25.45 17.51 27.07 29.97 表 2 原油火驱前后芳烃化合物相对含量对比
Table 2. Relative content of aromatic compounds in crude oil before and after fire flooding
原油类型 相对含量/% 萘系列 菲系列 三芳甾烷系列 稠环芳烃 火驱前 18.11 33.06 22.17 8.95 火驱后 20.84 53.19 10.07 15.91 表 3 原油火驱前后萘系列化合物对比
Table 3. Relative content of naphthalene series compounds in crude oil before and after fire flooding
原油类型 相对含量/% 2-MN/1-MN 萘 甲基萘 二甲基萘 三甲基萘 四甲基萘 火驱前 1.70 1.37 16.03 44.22 36.68 0.72 火驱后 0.45 0.38 5.10 56.02 38.05 0.83 表 4 原油火驱前后菲系列化合物对比
Table 4. Relative content of phenanthrene series compounds in crude oil before and after fire flooding
原油类型 相对含量/% MPR MPI 菲 甲基菲 二甲基菲 三甲基菲 四甲基菲 火驱前 5.14 15.14 40.76 31.72 7.24 0.85 0.51 火驱后 6.70 17.34 39.07 27.88 9.00 0.93 0.73 -
[1] 才业. 水淹稠油油藏火驱开发受效特征研究[J]. 特种油气藏, 2020, 27(5): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202005019.htmCAI Ye. Study on the response characteristics of fire flooding in water-flooded heavy oil reservoirs[J]. Special oil & Gas Reservoirs, 2019, 27(5): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202005019.htm [2] 关文龙, 席长丰, 陈亚平, 等. 稠油油藏注蒸汽开发后期转火驱技术[J]. 石油勘探与开发, 2011, 38(4): 452-462. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201104010.htmGUAN Wenlong, XI Changfeng, CHEN Yaping, et al. Fire-flooding technologies in post-steam-injected heavy oil reservoirs[J]. Petroleum Exploration and Development, 2011, 38(4): 452-462. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201104010.htm [3] 李秋, 何厚锋, 关文龙, 等. 稠油油藏火驱驱替特征实验研究[J]. 油气地质与采收率, 2021, 28(6): 79-86. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202106010.htmLI Qiu, HE Houfeng, GUAN Wenlong, et al. Experimental study on displacement characteristics of fire flooding in heavy oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(6): 79-86. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202106010.htm [4] 张方礼, 户昶昊, 马宏斌, 等. 辽河油田火驱开发技术进展[J]. 特种油气藏, 2020, 27(6): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202006002.htmZHANG Fangli, HU Changhao, MA Hongbin, et al. Development of fire flooding technology in Liaohe Oilfield[J]. Special Oil & Gas Reservoirs, 2020, 27(6): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202006002.htm [5] 赵睿智, 陈明贵, 高飞, 等. 厚层稠油油藏直平组合火驱优化[J]. 断块油气田, 2020, 27(2): 233-237. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202002020.htmZHAO Ruizhi, CHEN Minggui, GAO Fei, et al. In-situ combustion optimization of vertical and horizontal wells combination for heavy oil reservoirs with thick layer[J]. Fault-Block Oil and Gas Field, 2020, 27(2): 233-237. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202002020.htm [6] 蒋海岩, 李晓倩, 高成国, 等. 火驱阶段特征对比与分析[J]. 油气藏评价与开发, 2020, 10(5): 114-119. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202005020.htmJIANG Haiyan, LI Xiaoqi, GAO Chengguo, et al. Comparison and analysis of stage feature of in situ combustion[J]. Reservoir Evaluation and Development, 2020, 10(5): 114-119. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202005020.htm [7] 关文龙, 宫宇宁, 唐君实, 等. 多层油藏火驱开发模式探讨[J]. 特种油气藏, 2020, 27(6): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202006008.htmGUAN Wenlong, GONG Yuning, TANG Junshi, et al. Study on fire flooding development mode of multi-layer reservoirs[J]. Special Oil & Gas Reservoirs, 2020, 27(6): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202006008.htm [8] 关文龙, 吴淑红, 梁金中, 等. 从室内实验看火驱辅助重力泄油技术风险[J]. 西南石油大学学报(自然科学版), 2009, 31(4): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY200904017.htmGUAN Wenlong, WU Shuhong, LIANG Jinzhong, et al. The research on engineering risk in combustion assisted gravity drainage based on indoor experiment[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2009, 31(4): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY200904017.htm [9] 彭小强, 韩晓强, 杨洋, 等. 水平井火驱辅助重力泄油燃烧状态及燃烧前缘预测[J]. 新疆石油地质, 2020, 41(2): 199-203. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202002011.htmPENG Xiaoqiang, HAN Xiaoqiang, YANG Yang, et al. Combustion state and burning front prediction during combustion assisted gravity drainage process in horizonal wells[J]. Xinjiang Petroleum Geology, 2020, 41(2): 199-203. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202002011.htm [10] 程宏杰, 顾鸿君, 刁长军, 等. 注蒸汽开发后期稠油藏火驱高温燃烧特征[J]. 成都理工大学学报(自然科学版), 2012, 39(4): 426-429. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201204013.htmCHENG Hongjie, GU Hongjun, DIAO Changjun, et al. Research on high temperature combustion properties in heavy oil reservoir in the late period of steam injection development[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2012, 39(4): 426-429. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201204013.htm [11] 王延杰, 顾鸿君, 程宏杰, 等. 注蒸汽开发后期稠油油藏火驱燃烧特征评价方法[J]. 石油天然气学报, 2012, 34(10): 125-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201210029.htmWANG Yanjie, GU Hongjun, CHENG Hongjie, et al. Evaluation method for in-situ combustion characteristics in heavy-oil reservoirs at the late stage of steam injection[J]. Journal of Oil and Gas Technology, 2012, 34(10): 125-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201210029.htm [12] 刘应忠, 胡士清. 高3-6-18块火烧油层跟踪效果评价[J]. 长江大学学报(自然科学版), 2009, 6(1): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL200901019.htmLIU Yingzhong, HU Shiqing. Trace research on Gao 3-6-18 in situ combustion[J]. Journal of Yangtze University(Natural Science Edition), 2009, 6(1): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL200901019.htm [13] 金兆勋. 高3618块火烧油层试验效果跟踪研究[J]. 石油地质与工程, 2011, 25(5): 121-123. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201105038.htmJIN Zhaoxun. Trace research on Gao3618 in situ combustion testing effect[J]. Petroleum Geology and Engineering, 2011, 25(5): 121-123. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201105038.htm [14] 关文龙, 马德胜, 梁金中, 等. 火驱储层区带特征实验研究[J]. 石油学报, 2010, 31(1): 100-104. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201001021.htmGUAN Wenlong, MA Desheng, LIANG Jinzhong, et al. Experimental research on thermodynamic characteristics of in-situ combustion zones in heavy oil reservoir[J]. Acta Petrolei Sinica, 2010, 31(1): 100-104. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201001021.htm [15] 刘其成, 刘宝良, 程海清. 超稠油油藏火驱辅助重力泄油技术实验研究[J]. 特种油气藏, 2015, 21(1): 84-87. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201501018.htmLIU Qicheng, LIU Baoliang, CHENG Haiqing. Propagation and control of fire front in the combustion assisted gravity drainage process using horizontal wells[J]. Special Oil & Gas Reservoirs, 2015, 21(1): 84-87. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201501018.htm [16] 梁金中, 关文龙, 蒋有伟, 等. 水平井火驱辅助重力泄油燃烧前缘展布与调控[J]. 石油勘探与开发, 2012, 39(6): 720-727. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201206011.htmLIANG Jinzhong, GUAN Wenlong, JIANG Youwei, et al. Propagation and control of fire front in the combustion assisted gravity drainage process using horizontal wells[J]. Petroleum Exploration and Development, 2012, 39(6): 720-727. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201206011.htm [17] 何继平, 刘静, 牛丽, 等. 气相色谱法分析火驱产出气[J]. 石油与天然气化工, 2010, 39(4): 352-353. https://www.cnki.com.cn/Article/CJFDTOTAL-STQG201004027.htmHE Jiping, LIU Jing, NIU Li, et al. Analysis of the production gas of combustion driving by gas chromatography[J]. Chemical Engineering of Oil & Gas, 2010, 39(4): 352-353. https://www.cnki.com.cn/Article/CJFDTOTAL-STQG201004027.htm [18] 杨智, 廖静, 高成国, 等. 红浅1井区直井火驱燃烧区带特征[J]. 大庆石油地质与开发, 2019, 38(1): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201901013.htmYANG Zhi, LIAO Jing, GAO Chengguo, et al. Characteristics of the in-situ-combustion zone for the vertical well in well block HQ1[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(1): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201901013.htm [19] 杨俊印. 火烧油层(干式燃烧)室内实验研究[J]. 特种油气藏, 2011, 18(6): 96-99. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201106026.htmYANG Junyin. Lab experimental study on in situ combustion (dry combustion)[J]. Special Oil & Gas Reservoirs, 2011, 18(6): 96-99. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201106026.htm [20] 张方礼, 赵庆辉, 闫红星, 等. 指纹分析技术在火驱燃烧状态识别中的应用[J]. 特种油气藏, 2015, 22(6): 80-84. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201506017.htmZHANG Fangli, ZHAO Qinghui, YAN Hongxing, et al. Application of signature analysis technique in identification of fire flood combustion state[J]. Special Oil & Gas Reservoirs, 2015, 22(6): 80-84. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201506017.htm [21] 杨俊印, 闫红星, 刘家林, 等. 杜66块火驱典型产出流体变化特征[J]. 特种油气藏, 2020, 27(3): 137-141. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202003023.htmYANG Junyin, YAN Hongxing, LIU Jialin, et al. Typical production fluid properties of fire-flooding in block Du66[J]. Special Oil & Gas Reservoirs, 2020, 27(3): 137-141. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202003023.htm [22] 刘雪, 李美俊, 唐友军, 等. 石油中不同环数芳烃化合物的精细分离和制备[J]石油实验地质, 2021, 43(3): 524-531. doi: 10.11781/sysydz202103524LIU Xue, LI Meijun, TANG Youjun, et al. An improved column-chromatographic separation for polycyclic aromatic compounds in petroleum[J]. Petroleum Geology & Experiment, 2021, 43(3): 524-531. doi: 10.11781/sysydz202103524 [23] 闫红星. 稠油火驱实验原油色谱指纹特征对比[J]. 新疆石油地质, 2021, 42(5): 592-597. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202105013.htmYAN Hongxing. Comparison of chromatographic fingerprint characteristics of heavy oil based on fire flooding experiments[J]. Xinjiang Petroleum Geology, 2021, 42(5): 592-597. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202105013.htm [24] 王传远, 杜建国, 段毅, 等. 芳香烃地球化学特征及地质意义[J]. 新疆石油地质, 2007, 28(1): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200701007.htmWANG Chuanyuan, DU Jianguo, DUAN Yi, et al. Geochemical characteristics and significance of aromatic hydrocarbon in oil and gas[J]. Xinjiang Petroleum Geology, 2007, 28(1): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200701007.htm [25] 陈致林, 李素娟, 王忠. 低—中成熟演化阶段芳烃成熟度指标的研究[J]. 沉积学报, 1997, 15(2): 192-197. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB702.040.htmCHEN Zhilin, LI Sujuan, WANG Zhong. A study on maturity indicators some of some aromatics in low-midmature thermal evolution zones[J]. Acta Sedimentologica Sinica, 1997, 15(2): 192-197. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB702.040.htm [26] 李美俊, 王铁冠. 原油中烷基萘的形成机理及其成熟度参数应用[J]. 石油实验地质, 2005, 27(6): 606-611. doi: 10.11781/sysydz200506606LI Meijun, WANG Tieguan. The generating mechanism of methy-lated naphthalene series in crude oils and the application of their maturity parameters[J]. Petroleum Geology & Experiment, 2005, 27(6): 606-611. doi: 10.11781/sysydz200506606 [27] 林红梅. 渤海湾盆地车镇凹陷下古生界烃源岩生物标志物特征[J]. 石油实验地质, 2017, 39(2): 230-237. doi: 10.11781/sysydz201702230LIN Hongmei. Biomarker characteristics of Lower Paleozoic source rocks in Chezhen Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2017, 39(2): 230-237. doi: 10.11781/sysydz201702230 [28] 孙永革, 路清华, 何毓新, 等. 塔里木盆地玉北1井原油成因再认识及其意义[J]. 石油实验地质, 2021, 43(5): 810-817. doi: 10.11781/sysydz202105810SUN Yongge, LU Qinghua, HE Yuxin, et al. Recognition of origin of crude oil from well Yubei 1 in Tarim Basin and its significance[J]. Petroleum Geology & Experiment, 2021, 43(5): 810-817. doi: 10.11781/sysydz202105810 [29] 宋长玉, 金洪蕊, 刘璇, 等. 烃源岩中甲基菲的分布及对成熟度参数的影响[J]. 石油实验地质, 2007, 29(2): 183-187. doi: 10.11781/sysydz200702183SONG Changyu, JIN Hongrui, LIU Xuan, et al. Distribution of methyl phenanthrene in sediments and its impacting on maturity parameters[J]. Petroleum Geology & Experiment, 2007, 29(2): 183-187. doi: 10.11781/sysydz200702183 [30] 郭瑞超, 隋风贵, 曾治平, 等. 芳烃参数重建原油成熟度及其在哈山地区的应用[J]. 石油实验地质, 2016, 38(5): 679-684. doi: 10.11781/sysydz201605679GUO Ruichao, SUI Fenggui, ZENG Zhiping, et al. Aromatic parameter reconstruction of crude oil maturity and its application in Hala'alate area[J]. Geochimica, 2016, 38(5): 679-684. doi: 10.11781/sysydz201605679 [31] 赵兴齐, 陈践发, 郭望, 等. 开鲁盆地奈曼凹陷奈1区块原油及烃源岩芳烃地球化学特征[J]. 地球化学, 2013, 42(3): 262-273. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201303007.htmZHAO Xingqi, CHEN Jianfa, GUO Wang, et al. Geochemical characteristics of aromatic hydrocarbon in crude oil and source rocks from Nai 1 block of Naiman Depression, Kailu Basin[J]. Geochimica, 2013, 42(3): 262-273. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201303007.htm [32] 万甜甜, 张枝焕, 贺光秀, 等. 土壤剖面部分多环芳烃源识别参数的纵向变化及成因[J]. 环境科学与技术, 2014, 37(6): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201406002.htmWAN Tiantian, ZHANG Zhihuan, HE Guangxiu, et al. Longitudinal change characters and source analysis of some polycyclic aromatic hydrocarbon source identification parameters in the soil profiles[J]. Environmental Science & Technology, 2014, 37(6): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201406002.htm [33] 张枝焕, 卢另, 贺光秀, 等. 北京地区表层土壤中多环芳烃的分布特征及污染源分析[J]. 生态环境学报, 2011, 20(4): 668-675. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201104015.htmZHANG Zhihuan, LU Ling, HE Guangxiu, et al. Distribution and sources of polycyclic aromatic hydrocarbon compounds in topsoil of Beijing, China[J]. Ecology and Environmental Sciences, 2011, 20(4): 668-675. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201104015.htm