Quantitative assessment for the formation fractures in source rock strata and its application
-
摘要: 地层破裂情况定量评价、破裂岩石对地层输导能力的促进作用研究,对非常规油气藏勘探具有重要的作用。通过同围压条件下岩石破裂压力与烃源岩层系围压影响范围的对比,对渤海湾盆地济阳坳陷渤南—四扣地区烃源岩层系静岩压力作用下的岩石破裂情况进行了定量研究,并实测了烃源岩层系岩石破裂对输导能力的影响。在此基础上提出了围压、破裂压力、破裂后输导能力综合比对研究地层破裂情况的方法。渤南—四扣区域烃源岩层系中,古近系沙河街组三段上、中亚段,区域较深部位砂岩、泥页岩岩层普遍产生破裂,中部位砂岩岩层产生破裂;沙河街组三段下亚段,区域中、深部位岩层普遍产生破裂;沙河街组四段上亚段,区域中、深部位岩层普遍产生破裂、高部位部分砂岩岩层产生破裂。破裂的地层渗透率大幅提升,能够作为有效输导通道。上述方法对现有“甜点”评价提供了有力补充。Abstract: Quantitative evaluation of formation fractures and research on the promotion of fractured rocks on formation transport capacity are of certain importance to the exploration of unconventional oil and gas reservoirs. By comparing the rock fracturing pressure under the same confining pressure condition with the confining pressure range of the source rock series, the rock fracturing situation of the source rock series under the action of static rock pressure in the Bonan-Sikou area of Jiyang Depression, Bohai Bay Basin was analyzed. The effect of source rock fractures to the transporting capacity was quantitatively measured. On this basis, a method of comprehensive comparison of confining pressure, fracture pressure and post-fracture conductivity was proposed to study formation fracture. In the upper and middle sections of the third member of Paleogene Shahejie Formation in Bonan-Sikou area, the sandstones and shale rocks in the deeper strata are generally ruptured, and the sandstone layers in the middle strata are regionally ruptured. In the lower section of the third member of Shahejie Formation, the middle and deep strata are generally ruptured. In the uppersection of the third member of Shahejie Formation, the middle and deep strata are generally ruptured, whilst only part of sandstone layer in the upper part is ruptured. The fractured formation has greatly increased permeability and can be used as an effective conduction channel. The methods described above provide a powerful complement to existing "sweet spot" evaluations.
-
Key words:
- source rock series /
- fracture /
- transport /
- Bonan-Sikou area /
- Bohai Bay Basin
-
图 1 渤海湾盆地济阳坳陷渤南—四扣地区位置及地层综合柱状图
据文献[18]修改。
Figure 1. Location and comprehensive histogram of stratigraphy of Bonan-Sikou area, Jiyang Depression, Bohai Bay Basin
图 4 渤海湾盆地渤南—四扣地区烃源岩层系静岩压力作用地层破裂范围
砂体展布据文献[17]修改。
Figure 4. Fracture range of source rock series under the action of static rock pressure in Bonan-Sikou area, Bohai Bay Basin
图 5 渤海湾盆地渤南—四扣地区义160井烃源岩层系存在含油差异的岩心与薄片观察
a.沙三段综合录井图;b.3 165.1 m处含油岩心;c-h.3 165.1 m处,25倍镜下薄片照片;c.荧光,含垂向缝粉砂岩—泥页岩互层;d.单偏光,含垂向缝粉砂岩—泥页岩互层;e.荧光,含斜向缝粉砂岩—泥页岩互层;f.单偏光,含斜向缝粉砂岩—泥页岩互层; g.荧光,含平行层面缝粉砂岩—泥页岩互层;h.单偏光,含平行层面缝粉砂岩—泥页岩互层
Figure 5. Observation of cores and thin slices with oil-bearing differences in source rock strata of well Yi 160, Bonan-Sikou area, Bohai Bay Basin
表 1 渤海湾盆地渤南—四扣地区典型岩石样本的矿物组成特征
Table 1. Mineral composition of typical rock samples from Bonan-Sikou area, Bohai Bay Basin
样品号 井号 埋深/m 岩石名称 矿物含量/% 黏土矿物 石英 钾长石 斜长石 方解石 白云石 黄铁矿 S1 义3-3-7 3 111.50 含泥质细粒岩屑长石砂岩 20 42 9 27 2 S2 义3-3-7 3 119.94 不等粒长石岩屑砂岩 4 55 12 26 3 S3 义3-3-7 3 166.89 不等粒长石岩屑砂岩 11 55 10 21 3 S4 义3-3-7 3 353.40 含泥质细粒岩屑长石砂岩 20 42 9 27 2 S5 渤深3 3 542.27 不等粒岩屑长石砂岩 10 50 7 23 1 9 S6 义151 4 295.50 中粒岩屑长石砂岩 14 49 28 1 5 3 M7 罗67 3 309.80 白云质泥页岩 9 16 2 64 9 M8 义3-3-7 3 578.87 含白云质泥页岩 32 29 7 15 9 8 M9 渤深3 3 714.94 含白云质泥页岩 34 28 6 15 12 5 M10 罗67 3 272.20 泥页岩 22 17 1 50 5 5 M11 义3-7-7 3 126.30 泥页岩 58 27 8 2 5 注:岩石样本中均不含硬石膏、菱铁矿、岩盐及方沸石矿物。 表 2 渤海湾盆地典型岩石样本无围压作用下的破裂压力
Table 2. Fracture pressure of rock samples without confining pressure, Bohai Bay Basin
单轴应力作用下样品参数 三轴应力作用下样品参数 砂岩样品号 破裂压力/MPa 泥页岩样品号 破裂压力/MPa 砂岩样品号 破裂压力/MPa 泥页岩样品号 破裂压力/MPa S1 99.5 M7 54.3 S1 199.8 M7 211.1 S2 33.4 M8 64.1 S2 73.8 M8 112.0 S3 40.1 M9 54.6 S3 105.6 M9 110.9 S4 72.5 M10 140.1 S4 121.6 M10 193.5 S5 73.3 M11 121.3 S5 160.6 M11 166.5 S6 116.2 S6 207.4 平均破裂压力 72.5 平均破裂压力 88.9 平均破裂压力 144.8 平均破裂压力 158.8 表 3 渤海湾盆地渤南—四扣地区岩石样本破裂前后渗透率比较
Table 3. Comparison of permeability of rock samples before and after rupture, Bonan-Sikou area, Bohai Bay Basin
砂岩样本 泥页岩样本 样品编号 破裂前渗透率/
(10-3 μm2)破裂后渗透率/
(10-3 μm2)破裂后与破裂前
渗透率之比样品编号 破裂前渗透率/
(10-3 μm2)破裂后渗透率/
(10-3 μm2)破裂后与破裂前
渗透率之比S2a 3.310 4.700 1.42 M7a 0.031 8.650 279.03 S2b 0.572 2.240 3.92 M7b 0.003 0.058 20.71 S2c 1.400 2.130 1.52 M7c 0.012 1.270 105.83 S2d 0.252 0.295 1.17 M7d 0.004 0.005 1.35 S4a 0.018 0.256 14.22 M8a 0.800 11.652 14.57 S4b 0.007 1.250 178.57 M8b 0.009 19.530 2 100.00 S4c 0.014 0.462 33.00 M8c 0.095 2.900 30.53 S4d 0.004 0.009 2.10 M8d 0.011 4.195 381.36 平均值 0.700 1.420 29.49 平均值 0.121 4.576 366.67 注: a, b, c, d为采自同一块岩心的不同样品,其中a, c为平行地表方向采集的样品,b, d为垂直地表方向采集的样品。 -
[1] 刘惠民, 张顺, 包友书, 等. 东营凹陷页岩油储集地质特征与有效性[J]. 石油与天然气地质, 2019, 40(3): 512-523. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903008.htmLIU Huimin, ZHANG Shun, BAO Youshu, et al. Geological characte-ristics and effectiveness of the shale oil reservoir in Dongying Sag[J]. Oil & Gas Geology, 2019, 40(3): 512-523. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903008.htm [2] 王永诗. 济阳坳陷不同领域油气勘探思路与方向[J]. 油气地质与采收率, 2021, 28(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202105001.htmWANG Yongshi. Ideas and directions for oil and gas exploration in different fields of Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202105001.htm [3] 李新景, 胡素云, 程克明. 北美裂缝性页岩气勘探开发的启示[J]. 石油勘探与开发, 2007, 34(4): 392-400. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200704003.htmLI Xinjing, HU Suyun, CHENG Keming. Suggestions from the development of fractured shale gas in North America[J]. Petroleum Exploration and Development, 2007, 34(4): 392-400. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200704003.htm [4] 黄荣樽. 地层破裂压力预测模式的探讨[J]. 华东石油学院学报, 1984, 8(4): 335-347. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX198404001.htmHUANG Rongzun. A model for predicting formation fracture pressure[J]. Journal of China University of Petroleum, 1984, 8(4): 335-347. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX198404001.htm [5] 孙焕泉, 王加滢. 地下构造裂缝分布规律及其预测[J]. 大庆石油学院学报, 2000, 24(3): 83-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY200003029.htmSUN Huanquan, WANG Jiaying. Distribution law of underground structural fissures and their forecasting[J]. Journal of Daqing Petroleum Institute, 2000, 24(3): 83-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY200003029.htm [6] 郭科, 胥泽银, 倪根生. 用主曲率法研究裂缝性油气藏[J]. 物探化探计算技术, 1998, 20(4): 47-49. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT804.008.htmGUO Ke, XU Zeyin, NI Gensheng. Research on the main curvature method and its application to cracky oil-gas deposits[J]. Computing Techniques for Giophysical and Geochenical Exploration, 1998, 20(4): 47-49. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT804.008.htm [7] 何光明, 高如曾. 分形理论在裂缝预测中的尝试[J]. 石油物探, 1993, 32(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT199302000.htmHE Guangming, GAO Ruzeng. Fracture prediction based on fractal theory[J]. Geophysical Prospecting for Petrole, 1993, 32(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT199302000.htm [8] 刘佑荣, 唐辉明. 岩体力学[M]. 武汉: 中国地质大学出版社, 1999.LIU Yourong, TANG Huiming. Rock mechanics[M]. Wuhan: China University of Geosciences Press, 1999. [9] 胡广韬, 杨文远. 工程地质学[M]. 西安: 地质出版社, 1984.HU Guangtao, YANG Wenyuan. Engineering geology[M]. Xi'an: China Geological Press, 1984. [10] 谢尔盖耶夫E M. 工程岩土学[M]. 孔徳坊, 译. 北京: 地质出版社, 1990.SERGEYEV M E. Engineering geotechnical science[M]. KONG Defang, trans. Beijing: Geological Press, 1990. [11] 朱志澄, 宋鸿林. 构造地质学[M]. 武汉: 中国地质大学出版社, 1990.ZHU Zhicheng, SONG Honglin. Structural geology[M]. Wuhan: China University of Geosciences Press, 1990. [12] 吕延防, 王伟, 胡欣蕾, 等. 断层侧向封闭性定量评价方法[J]. 石油勘探与开发, 2016, 43(2): 310-316. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602024.htmLV Yanfang, WANG Wei, HU Xinlei, et al. Quantitative evaluation method of fault lateral sealing[J]. Petroleum Exploration and Development, 2016, 43(2): 310-316. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602024.htm [13] 宁方兴. 东营凹陷裂缝输导体系输导能力评价[J]. 新疆石油天然气, 2014, 10(4): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY201404005.htmNING Fangxing. Transporting ability evaluation of fracture transportation system in Dongying Depression[J]. Xinjiang Oil & Gas, 2014, 10(4): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY201404005.htm [14] 宋明水, 王惠勇, 张云银. 济阳坳陷潜山"挤—拉—滑"成山机制及油气藏类型划分[J]. 油气地质与采收率, 2019, 26(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201904001.htmSONG Mingshui, WANG Huiyong, ZHANG Yunyin. "Extrusion, tension and strike-slip" mountainforming mechanism and reservoir type of buried hills in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201904001.htm [15] 蒋有录, 叶涛, 张善文, 等. 渤海湾盆地潜山油气富集特征与主控因素[J]. 中国石油大学学报(自然科学版), 2015, 39(3): 20-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201503003.htmJIANG Youlu, YE Tao, ZHANG Shanwen, et al. Enrichment characteristics and main controlling factors of hydrocarbon in buried hill of Bohai Bay Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(3): 20-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201503003.htm [16] 王颖, 王英民, 赵锡奎. 济阳坳陷构造演化对断块型潜山的形成及油气成藏的影响[J]. 矿物岩石, 2004, 24(2): 73-77. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200402015.htmWANG Ying, WANG Yingmin, ZHAO Xikui. Effect of tectonic evolution on the formation of fault block buried hill and hydrocarbon accumulation in Jiyang Depression[J]. Journal of Mineralogy and Petrology, 2004, 24(2): 73-77. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200402015.htm [17] 王俊辉. 东营凹陷始新统风场—物源—盆地系统沉积动力学研究[D]. 北京: 中国地质大学(北京), 2016.WANG Junhui. Study on sedimentary dynamics of Eocene wind field provenance basin system in Dongying Depression[D]. Beijing: China University of Geosciences (Beijing), 2016. [18] ZHANG Shun, LIU Huimin, LIU Yali, et al. Main controls and geological sweet spot types in Paleogene shale oil rich areas of the Jiyang Depression, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2020, 111: 576-587. [19] 吴春燕. 沾化凹陷生储盖岩系构造特征与油气成藏关系[D]. 西安: 西北大学, 2017.WU Chunyan. Relationship between structural features of source-reservoir-cap strata and hydrocarbons accumulation in Zhanhua Sag[D]. Xi'an: Northwest University, 2017. [20] 刘华, 袁飞飞, 蒋有录, 等. 沾化凹陷古近系超压特征及其成因机制[J]. 中国石油大学学报(自然科学版), 2021, 45(3): 23-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202103003.htmLIU Hua, YUAN Feifei, JIANG Youlu, et al. Genesis and characte-ristics of Paleogene overpressure in Zhanhua Depression, Jiyang Sub-basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(3): 23-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202103003.htm [21] 王培荣, 徐冠军, 张大江, 等. 烃源岩与原油中轻馏分烃的对比: 以胜利油田东营、沾化凹陷为例[J]. 石油与天然气地质, 2013, 34(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201301003.htmWANG Peirong, XU Guanjun, ZHANG Dajiang, et al. Correlation of light hydrocarbons between source rock and crude oil: an example from Dongying and Zhanhua depressions in Jiyang subbasin, Bohai Bay Basin[J]. Oil & Gas Geology, 2013, 34(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201301003.htm [22] 郭瑞超, 李延钧, 王廷栋, 等. 胜利油田渤南洼陷古近系油气源与成藏特征[J]. 新疆石油地质, 2009, 30(6): 674-676. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200906006.htmGUO Ruichao, LI Yanjun, WANG Tingdong, et al. Oil-gas source and accumulation characteristics of Paleogene in Bonan sub-sag in Shengli oil field[J]. Xinjiang Petroleum Geology, 2009, 30(6): 674-676. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200906006.htm [23] 刘惠民, 于炳松, 谢忠怀, 等. 陆相湖盆富有机质页岩微相特征及对页岩油富集的指示意义: 以渤海湾盆地济阳坳陷为例[J]. 石油学报, 2018, 39(12): 1328-1343. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201812002.htmLIU Huimin, YU Bingsong, XIE Zhonghuai, et al. Characteristics and implications of micro-lithofacies in lacustrine-basin organic-rich shale: a case study of Jiyang Depression, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2018, 39(12): 1328-1343. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201812002.htm [24] 王韶华, 聂惠, 马胜钟, 等. 江汉盆地潜江凹陷古近系潜江组盐间页岩油资源评价与甜点区预测[J]. 石油实验地质, 2022, 44(1): 94-101. doi: 10.11781/sysydz202201094WANG Shaohua, NIE Hui, MA Shengzhong, et al. Resource evaluation and sweet-spot prediction of inter-salt shale oil of Paleogene Qianjiang Formation, Qianjiang Sag, Jianghan Basin[J]. Petroleum Geology & Experiment, 2022, 44(1): 94-101. doi: 10.11781/sysydz202201094 [25] 刘超英. 页岩气勘探选区评价方法探讨[J]. 石油实验地质, 2013, 35(5): 564-569. doi: 10.11781/sysydz201305564LIU Chaoying. Discussion on methods of shale gas exploration evaluation[J]. Petroleum Geology & Experiment, 2013, 35(5): 564-569. doi: 10.11781/sysydz201305564 [26] 李志明, 孙中良, 黎茂稳, 等. 陆相基质型页岩油甜点区成熟度界限探讨: 以渤海湾盆地东营凹陷沙三下—沙四上亚段为例[J]. 石油实验地质, 2021, 43(5): 767-775. doi: 10.11781/sysydz202105767LI Zhiming, SUN Zhongliang, LI Maowen, et al. Maturity limit of sweet spot area for continental matrix type shale oil: a case study of lower Es3 and upper Es4 sub-members in Dongying Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2021, 43(5): 767-775. doi: 10.11781/sysydz202105767 [27] 王然, 常秋生, 钱永新, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油"甜点体"储集特征及成因机理[J]. 石油实验地质, 2020, 42(4): 604-611. doi: 10.11781/sysydz202004604WANG Ran, CHANG Qiusheng, QIAN Yongxin, et al. Reservoir characteristics and genesis of shale oil "sweet spots" in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 604-611. doi: 10.11781/sysydz202004604 [28] 李志明, 钱门辉, 黎茂稳, 等. 盐间页岩油形成有利条件与地质甜点评价关键参数: 以潜江凹陷潜江组潜34-10韵律为例[J]. 石油实验地质, 2020, 42(4): 513-523. doi: 10.11781/sysydz202004513LI Zhiming, QIAN Menhui, LI Maowen, et al. Favorable conditions of inter-salt shale oil formation and key parameters for geological sweet spots evaluation: a case study of Eq34-10 rhythm of Qianjiang Formation in Qianjiang Sag, Jianghan Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 513-523. doi: 10.11781/sysydz202004513 [29] 郝牧歌, 张金功, 马士磊, 等. 从常规与非常规油气成藏的正相关性角度预测有利区: 以孤岛1号凹隆域低部位为例[J]. 油气地质与采收率, 2022, 29(4): 46-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202204005.htmHAO Muge, ZHANG Jingong, MA Shilei, et al. Predicting favorable areas from the perspective of positive correlation between conventional and unconventional oil and gas accumulation: taking the low part of Gudao No. 1 sag and uplift as an example[J]. Petroleum Geology and Recovery Efficiency, 2022, 29 (4): 46-56 https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202204005.htm