留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核磁共振技术在页岩油气储层评价中的应用

孙中良 李志明 申宝剑 祝庆敏 李楚雄

孙中良, 李志明, 申宝剑, 祝庆敏, 李楚雄. 核磁共振技术在页岩油气储层评价中的应用[J]. 石油实验地质, 2022, 44(5): 930-940. doi: 10.11781/sysydz202205930
引用本文: 孙中良, 李志明, 申宝剑, 祝庆敏, 李楚雄. 核磁共振技术在页岩油气储层评价中的应用[J]. 石油实验地质, 2022, 44(5): 930-940. doi: 10.11781/sysydz202205930
SUN Zhongliang, LI Zhiming, SHEN Baojian, ZHU Qingmin, LI Chuxiong. NMR technology in reservoir evaluation for shale oil and gas[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(5): 930-940. doi: 10.11781/sysydz202205930
Citation: SUN Zhongliang, LI Zhiming, SHEN Baojian, ZHU Qingmin, LI Chuxiong. NMR technology in reservoir evaluation for shale oil and gas[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(5): 930-940. doi: 10.11781/sysydz202205930

核磁共振技术在页岩油气储层评价中的应用

doi: 10.11781/sysydz202205930
基金项目: 

国家自然科学基金项目 42090022

中国石化科技开发部项目 P20049-1

详细信息
    作者简介:

    孙中良(1993-), 男, 硕士, 工程师, 从事页岩油气地质研究。E-mail: sunzhl8188.syky@sinopec.com

    通讯作者:

    李志明(1968-), 男, 博士, 研究员, 从事油气地球化学、页岩油气地质研究。E-mail: lizm.syky@sinopec.com

  • 中图分类号: TE122.24

NMR technology in reservoir evaluation for shale oil and gas

  • 摘要: 自非常规油气业务开展以来,核磁共振技术因其无损、灵敏、快速等优点,已发展为页岩油气储层评价的重要技术方法之一。该文从核磁共振技术的实验原理出发,着重综述了目前核磁共振技术在全尺度一体化表征页岩孔缝分布、孔隙度、孔隙润湿性、流体可动性及流体分类等页岩油气储层研究难点方面的应用。除此之外,在描述水的迁移、甲烷吸附和解吸以及二氧化碳置换等流体行为,获取有机质信息、油页岩界面面积,判断有机孔、无机孔,分析孔隙连通性,获取高黏性沥青和干酪根有关信息等方面的应用也做了简单介绍。最后分析了核磁共振分析技术目前存在的不足以及在页岩储层评价中的发展趋势。

     

  • 图  1  核磁共振中氢质子在磁场中的变化

    Figure  1.  Changes of hydrogen protons in magnetic fields in NMR

    图  2  页岩在核磁共振下的T2谱图特征[31]

    富有机质页岩样品,包括无平面缝和有平面缝(缝宽分布为1.5,4.5,7.5 μm);红色箭头表示随裂缝宽度减小,T2峰谱图左移,黑色箭头表示裂缝与孔隙存在扩散耦合作用

    Figure  2.  Characteristics of T2 spectra of shale under NMR

    图  3  水测孔隙度与核磁孔隙度关系[38]

    Figure  3.  Relationship between conventional and NMR porosity

    图  4  不同磁场下不同回波间隔条件下的孔隙度大小及对比[40]

    Figure  4.  Porosity size and comparison under different magnetic fields and different echo intervals

    图  5  岩样离心前后T2谱比较[41]

    Figure  5.  T2 spectrum comparison of rock samples before and after centrifugation

    图  6  在500 psi压力下注入盐水和柴油10 min后页岩岩心的核磁共振液体积随T2的变化[46]

    Figure  6.  Incremental NMR fluid volume as a function of T2 for shale core before and after brine and diesel injection at 500 psi for 10 min

    图  7  孔隙介质中不同流体组分的二维核磁共振信息分布[52]

    Figure  7.  Two-dimensional NMR information distribution of different fluid components in porous media

    图  8  流体或质子分类T1T2模型[55, 57]

    Figure  8.  T1-T2 model for fluid or proton classification

    表  1  核磁共振与其他实验孔隙度评估结果对比

    Table  1.   Comparison of NMR and other experimental porosity evaluation results

    文献来源 样品 总孔隙度/% 相对误差/%
    ΦN2 ΦMIP ΦHe ΦNMR R1 R2 R3
    HINAI等[34] C1 2.78 3.78 11.4 75.6 66.8
    C2 4.15 3.05 10.8 61.6 71.8
    C3 1.93 3.17 6.7 71.2 52.7
    C5 2.92 3.03 14.2 79.4 78.6
    C7 3.11 3.54 11.6 73.2 69.5
    C8 3.22 3.56 14.0 77.0 74.5
    XU等[35] NM-1 38.60 40.59 4.9
    NM-3 39.73 42.21 5.8
    NM-4 42.78 46.98 8.9
    NM-6 35.73 37.24 4.0
    ZHANG等[36] L76-2 7.21 7.08 1.8
    F41-2 6.37 5.92 7.6
    L76-1 5.41 5.44 0.5
    Y556-3 1.60 1.44 11.1
    Y556-2 8.74 9.99 12.5
    注: ФN2ФMIPФHeФNMR分别为氮气吸附法、MIP法、氦气法、NMR法的总孔隙度;R1=(ФNMR -ФN2) /ФNMR×100;R2 =(ФNMR -ФMIP) /ФNMR×100;R3=(ФNMR -ФHe)/ФNMR×100。
    下载: 导出CSV
  • [1] 窦锦爱, 林业青, 邵丰, 等. 页岩气储层孔隙结构表征技术及实验方法研究进展[J]. 西安科技大学学报, 2020, 40(6): 1019-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB202006014.htm

    DOU Jin'ai, LIN Yeqing, SHAO Feng, et al. Advances in characte-rization techniques and experimental methods of shale gas reservoir pore structure[J]. Journal of Xi'an University of Science and Technology, 2020, 40(6): 1019-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB202006014.htm
    [2] 周正, 王兴志, 谢林, 等. 川中地区震旦系灯影组储层特征及物性影响因素[J]. 天然气地球科学, 2014, 25(5): 701-708. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201405009.htm

    ZHOU Zheng, WANG Xingzhi, XIE Lin, et al. Reservoir features and physical influences of the Sinian Dengying Formation (Sinian) in central Sichuan, China[J]. Natural Gas Geoscience, 2014, 25(5): 701-708. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201405009.htm
    [3] MASTALERZ M, SCHIMMELMANN A, DROBNIAK A, et al. Porosity of Devonian and Mississippian new Albany shale across a maturation gradient: insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643. doi: 10.1306/04011312194
    [4] 张琴, 朱筱敏, 李晨溪, 等. 渤海湾盆地沾化凹陷沙河街组富有机质页岩孔隙分类及孔径定量表征[J]. 石油与天然气地质, 2016, 37(3): 422-432. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201603017.htm

    ZHANG Qin, ZHU Youmin, LI Chenxi, et al. Classification and quantitative characterization of microscopic pores in organic-rich shale of the Shahejie Formation in the Zhanhua Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2016, 37(3): 422-432. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201603017.htm
    [5] 李卓, 姜振学, 唐相路, 等. 渝东南下志留统龙马溪组页岩岩相特征及其对孔隙结构的控制[J]. 地球科学, 2017, 42(7): 1116-1123. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707007.htm

    LI Zhuo, JIANG Zhenxue, TANG Xianglu, et al. Lithofacies characteristics and its effect on pore structure of the marine shale in the low Silurian Longmaxi Formation, southeastern Chongqing[J]. Earth Science, 2017, 42(7): 1116-1123. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707007.htm
    [6] 包友书. 渤海湾盆地东营凹陷古近系页岩油主要赋存空间探索[J]. 石油实验地质, 2018, 40(4): 479-484. doi: 10.11781/sysydz201804479

    BAO Youshu. Effective reservoir spaces of Paleogene shale oil in the Dongying Depression, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2018, 40(4): 479-484. doi: 10.11781/sysydz201804479
    [7] BROWN R J S, FATT I. Measurements of fractional wettability of oil fields' rocks by the nuclear magnetic relaxation method[C]//Fall Meeting of the Petroleum Branch of AIME. Los Angeles, California: AIME, 1956: 262-264.
    [8] VINEGAR H J. X-ray CT and NMR imaging of rocks[J]. Journal of Petroleum Technology, 1986, 38(3): 257-259. doi: 10.2118/15277-PA
    [9] EDELSTEIN W A, VINEGAR H J, TUTUNJIAN P N, et al. NMR imaging for core analysis[C]//SPE Annual Technical Conference and Exhibition. Houston, Texas: Society of Petroleum Engineers, 1988: 1-12.
    [10] CHEN Songhua, QIN Fangfang, KIM K H, et al. NMR imaging of multiphase flow in porous Media[J]. AICHE Journal, 1992, 39(6): 925-934.
    [11] FREEDMAN R. Advances in NMR logging[J]. Journal of Petroleum Technology, 2006, 58(1): 60-66. doi: 10.2118/89177-JPT
    [12] 冯动军, 肖开华. 恒速压汞及核磁共振技术在四川盆地西部致密砂岩储层评价中的应用[J]. 石油实验地质, 2021, 43(2): 368-376. doi: 10.11781/sysydz202102368

    FENG Dongjun, XIAO Kaihua. Constant velocity mercury injection and nuclear magnetic resonance in evaluation of tight sandstone reservoirs in western Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 368-376. doi: 10.11781/sysydz202102368
    [13] 钟红利, 吴雨风, 张凤奇, 等. 陕北斜坡东南部致密砂岩孔喉分布及其对含油性的影响[J]. 断块油气田, 2021, 28(1): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202101006.htm

    ZHONG Hongli, WU Yufeng, ZHANG Fengqi, et al. Pore throat distribution of tight sandstone in the southeast of the Northern Shaanxi Slope and its influence on oil-bearing property[J]. Fault-Block Oil and Gas Field, 2021, 28(1): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202101006.htm
    [14] 惠威, 薛宇泽, 白晓路, 等. 致密砂岩储层微观孔隙结构对可动流体赋存特征的影响[J]. 特种油气藏, 2020, 27(2): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202002013.htm

    HUI Wei, XUE Yuze, BAI Xiaolu, et al. Influence of micro-pore structure on the movable fluid occurrence in tight sandstone reservoir[J]. Special Oil & Gas Reservoirs, 2020, 27(2): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202002013.htm
    [15] 张全培, 吴文瑞, 刘丽萍, 等. 鄂尔多斯盆地镇北地区延长组超低渗透储层孔隙结构及其分形特征[J]. 油气地质与采收率, 2020, 27(3): 20-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202003004.htm

    ZHANG Quanpei, WU Wenrui, LIU Liping, et al. Pore structure and fractal characteristics of ultra-low permeability reservoirs in Yanchang Formation in Zhenbei area, Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(3): 20-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202003004.htm
    [16] 闫健, 秦大鹏, 王平平, 等. 鄂尔多斯盆地致密砂岩储层可动流体赋存特征及其影响因素[J]. 油气地质与采收率, 2020, 27(6): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202006007.htm

    YAN Jian, QIN Dapeng, WANG Pingping, et al. Occurrence characteristics and main controlling factors of movable fluid in tight sandstone reservoirs in Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(6): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202006007.htm
    [17] 魏赫鑫, 赖枫鹏, 蒋志宇, 等. 延长致密气储层微观孔隙结构及流体分布特征[J]. 断块油气田, 2020, 27(2): 182-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202002010.htm

    WEI Hexin, LAI Fengpeng, JIANG Zhiyu, et al. Micropore structure and fluid distribution characteristics of Yanchang tight gas reservoir[J]. Fault-Block Oil and Gas Field, 2020, 27(2): 182-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202002010.htm
    [18] 贾成业, 贾爱林, 何东博, 等. 页岩气水平井产量影响因素分析[J]. 天然气工业, 2017, 37(4): 80-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201704014.htm

    JIA Chengye, JIA Ailin, HE Dongbo, et al. Key factors influencing shale gas horizontal well production[J]. Natural Gas Industry, 2017, 37(4): 80-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201704014.htm
    [19] CARR H Y, PURCELL E M. Effects of diffusion on free precession in nuclear magnetic resonance experiments[J]. Physical Review, 1954, 94(3): 630-638. doi: 10.1103/PhysRev.94.630
    [20] MEIBOOM S, GILL D. Modified spin-echo method for measuring nuclear relaxation times[J]. Review of Scientific Instruments, 1958, 29(8): 688-691. doi: 10.1063/1.1716296
    [21] 高洁, 任大忠, 刘登科, 等. 致密砂岩储层孔隙结构与可动流体赋存特征: 以鄂尔多斯盆地华庆地区长63致密砂岩储层为例[J]. 地质科技情报, 2018, 37(4): 184-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804025.htm

    GAO Jie, REN Dazhong, LIU Dengke, et al. Impact of pore structures on features of movable fluid in tight sandstone reservoir: taking Chang 63 tight sandstone reservoir of Huaqing area in Ordos Basin as an example[J]. Geological Science and Technology Information, 2018, 37(4): 184-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804025.htm
    [22] DAIGLE H, THOMAS B, ROWE H, et al. Nuclear magnetic resonance characterization of shallow marine sediments from the Nankai Trough, integrated ocean drilling program expedition 333[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(4): 2631-2650. doi: 10.1002/2013JB010784
    [23] 孙中良, 王芙蓉, 韩元佳, 等. 江汉盆地潜江凹陷古近系潜江组盐间可动页岩油赋存空间多尺度表征[J]. 石油实验地质, 2020, 42(4): 586-595. doi: 10.11781/sysydz202004586

    SUN Zhongliang, WANG Furong, HAN Yuanjia, et al. Multi-scale characterization of the spatial distribution of movable hydrocarbon in intersalt shale of Qianjiang Formation, Qianjiang Sag, Jianghan Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 586-595. doi: 10.11781/sysydz202004586
    [24] BROWNSTEIN K R, TARR C E. Importance of classical diffusion in NMR studies of water in biological cells[J]. Phys Rev A, 1979, 19(6): 2446-2453. doi: 10.1103/PhysRevA.19.2446
    [25] LI Ang, DING Wenlong, WANG Ruyue, et al. Petrophysical characterization of shale reservoir based on nuclear magnetic resonance (NMR) experiment: a case study of Lower Cambrian Qiongzhusi Formation in eastern Yunnan province, South China[J]. Journal of Natural Gas Science and Engineering, 2017, 37: 29-38. doi: 10.1016/j.jngse.2016.11.034
    [26] LUO Zhixiang, PAULSEN J, SONG Yiqiao. Robust determination of surface relaxivity from nuclear magnetic resonance DT2 mea-surements[J]. Journal of Magnetic Resonance, 2015, 259: 146-152. doi: 10.1016/j.jmr.2015.08.002
    [27] HURLIMANM M D, HELMER K G, LATOUR L L, et al. Restricted diffusion in sedimentary rocks. Determination of surface-area-to-volume ratio and surface relaxivity[J]. Journal of Magnetic Resonance, Series A, 1994, 111(2): 169-178. doi: 10.1006/jmra.1994.1243
    [28] 陈瑶, 张宫, 郑国庆, 等. T2Pc二维核磁共振岩心测试技术与应用[J]. 石油实验地质, 2021, 43(3): 549-556. doi: 10.11781/sysydz202103549

    CHEN Yao, ZHANG Gong, ZHENG Guoqing, et al. Core testing technology with T2-Pc two-dimensional nuclear magnetic resonance and its application[J]. Petroleum Geology & Experiment, 2021, 43(3): 549-556. doi: 10.11781/sysydz202103549
    [29] 公言杰, 柳少波, 赵孟军, 等. 核磁共振与高压压汞实验联合表征致密油储层微观孔喉分布特征[J]. 石油实验地质, 2016, 38(3): 389-394. doi: 10.11781/sysydz201603389

    GONG Yanjie, LIU Shaobo, ZHAO Mengjun, et al. Characterization of micro pore throat radius distribution in tight oil reservoirs by NMR and high pressure mercury injection[J]. Petroleum Geology & Experiment, 2016, 38(3): 389-394. doi: 10.11781/sysydz201603389
    [30] 郎东江, 伦增珉, 吕成远, 等. 页岩油注二氧化碳提高采收率影响因素核磁共振实验[J]. 石油勘探与开发, 2021, 48(3): 603-612. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103016.htm

    LANG Dongjiang, LUN Zengmin, LV Chengyuan, et al. Nuclear magnetic resonance experimental study of CO2 injection to enhance shale oil recovery[J]. Petroleum Exploration and Development, 2021, 48(3): 603-612. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103016.htm
    [31] LU Chi, HEIDARI Z. Quantifying the impact of natural fractures and pore structure on NMR measurements in multiple-porosity systems[C]//International Petroleum Technology Conference. Doha, Qatar: International Petroleum Technology Conference, 2014: 1-12.
    [32] FORDHAM E J, KENYON W E, RAMAKRISHNAN T S, et al. Forward models for Nuclear Magnetic Resonance in carbonate rocks[J]. The Log Analyst, 1999, 40(4): 260-270.
    [33] KLEINBERG R L. Nuclear magnetic resonance[M]//WONG P Z. Methods in the physics of porous media. San Diego: Academic Press, 1999: 337.
    [34] HINAI A A, REZAEE R, ESTEBAN L, et al. Comparisons of pore size distribution: a case from the western Australian gas shale formations[J]. Journal of Unconventional Oil and Gas Resources, 2014, 8: 1-13.
    [35] XU Hao, TANG Dazhen, CHEN Yanpeng, et al. Effective porosity in lignite using kerosene with low-field nuclear magnetic resonance[J]. Fuel, 2018, 213: 158-163.
    [36] ZHANG Pengfei, LU Shuafang, LI Junqian, et al. Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance(NMR)[J]. Marine and Petroleum Geology, 2018, 89: 775-785.
    [37] 肖立志. 我国核磁共振测井应用中的若干重要问题[J]. 测井技术, 2007, 31(5): 401-407. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS200705002.htm

    XIAO Lizhi. Some important issues for NMR logging applications in China[J]. Well Logging Technology, 2007, 31(5): 401-407. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS200705002.htm
    [38] 孙军昌, 陈静平, 杨正明, 等. 页岩储层岩芯核磁共振响应特征实验研究[J]. 科技导报, 2012, 30(14): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201214019.htm

    SUN Junchang, CHEN Jingping, YANG Zhengming, et al. Experi-mental study of the NMR characteristics of shale reservoir rock[J]. Tech review, 2012, 30(14): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201214019.htm
    [39] 肖立志. 核磁共振成像测井与岩石核磁共振及其应用[M]. 北京: 科学出版社, 1998.

    XIAO Lizhi. NMR imaging logging and rock NMR properties and its applications[M]. Beijing: Science Press, 1998.
    [40] 韩波, 李楠, 李新, 等. 不同核磁共振测量环境下的页岩孔隙度差异研究[C]//2020油气田勘探与开发国际会议论文集. 西安: 西安石油大学, 2020.

    HAN Bo, LI Nan, LI Xin, et al. Study on shale porosity in different NMR measurement pattern[C]. Proceedings of 2020 International Conference on Oil and Gas Field Exploration and Development. Xi'an: Xi'an Shiyou University, 2020.
    [41] 吴海科, 曹凯, 赵方方. 低渗沉积岩可动流体饱和度核磁共振实验[J]. 天然气地球科学, 2021, 32(3): 457-464. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202103015.htm

    WU Haike, CAO Kai, ZHAO Fangfang. NMR experimental study of movable fluid saturation in low permeability sedimentary rocks[J]. Natural Gas Geoscience, 2021, 32(3): 457-464. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202103015.htm
    [42] 李闽, 王浩, 陈猛. 致密砂岩储层可动流体分布及影响因素研究: 以吉木萨尔凹陷芦草沟组为例[J]. 岩性油气藏, 2018, 30(1): 140-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201801014.htm

    LI Min, WANG Hao, CHEN Meng. Distribution characteristics and influencing factors of movable fluid in tight sandstone reservoirs: a case study of Lucaogou Formation in Jimsar Sag, NW China[J]. Lithologic Reservoirs, 2018, 30(1): 140-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201801014.htm
    [43] AL-MAHROOQI S H, GRATTONI C A, MOSS A K, et al. An investigation of the effect of wettability on NMR characteristics of sandstone rock and fluid systems[J]. Journal of Petroleum Science and Engineering, 2003, 39(3/4): 389-398.
    [44] BRANCO F R, GIL N A. NMR study of carbonates wettability[J]. Journal of Petroleum Science and Engineering, 2017, 157: 288-294.
    [45] WANG Liang, FU Yonghong, SIMA L Q, et al. Nuclear magnetic resonance (NMR) characteristics of oil and water in shale gas reservoirs of Longmaxi Formation in southeast Sichuan Basin, China[C]//2016 SEG International Exposition and Annual Meeting. Dallas, Texas: Society of Exploration Geophysicists, 2016: 3528-3532.
    [46] ZHANG Boyang, GOMAA A M, SUN Hong, et al. A study of shale wettability using NMR measurements[C]//International Symposium of the Society of Core Analysts, Avignon, France, 2014.
    [47] LOOYESTIJN W J, HOFMAN J. Wettability-index determination by nuclear magnetic resonance[J]. SPE Reservoir Evaluation & Engineering, 2006, 9(2): 146-153.
    [48] SULUCARNAIN I D, SONDERGELD C H, RAI C S. An NMR study of shale wettability and effective surface relaxivity[C]//Proceedings of the SPE Canadian Unconventional Resources Conference. Calgary, Alberta, Canada: SPE, 2012: 162-236.
    [49] 冯程, 石玉江, 郝建飞, 等. 低渗透复杂润湿性储集层核磁共振特征[J]. 石油勘探与开发, 2017, 44(2): 252-257. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201702012.htm

    FENG Cheng, SHI Yujiang, HAO Jianfei, et al. Nuclear magnetic resonance features of low-permeability reservoirs with complex wettability[J]. Petroleum Exploration and Development, 2017, 44(2): 252-257. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201702012.htm
    [50] 刘忠华, 李霞, 赵文智, 等. 核磁共振增强扩散方法在复杂储集层流体识别中的应用[J]. 石油勘探与开发, 2010, 37(6): 703-708. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006011.htm

    LIU Zhonghua, LI Xia, ZHAO Wenzhi, et al. Enhanced diffusion theory of nuclear magnetic resonance (NMR) and its application to fluid identification of complex reservoirs[J]. Petroleum Exploration and Development, 2010, 37(6): 703-708. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006011.htm
    [51] SUN B, DUNN K J. Core analysis with two dimensional NMR[C]//International Symposium of the Society of Core Analysts. Monterey: SCA, 2002.
    [52] HÜRLIMANN M D, VENKATARAMANAN L. Quantitative mea-surement of two-dimensional distribution functions of diffusion and relaxation in grossly inhomogeneous fields[J]. Journal of Magnetic Resonance, 2002, 157(1): 31-42.
    [53] 顾兆斌, 刘卫, 孙佃庆, 等. 基于核磁共振二维谱技术识别储层流体类型[J]. 西南石油大学学报(自然科学版), 2010, 32(5): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201005017.htm

    GU Zhaobin, LIU Wei, SUN Dianqing, et al. Identify reservoir fluid types with two dimensional NMR techniques[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32(5): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201005017.htm
    [54] MEHANA M, EL-MONIER I. Shale characteristics impact on nuclear magnetic resonance(NMR) fluid typing methods and correlations[J]. Petroleum, 2016, 2(2): 138-147.
    [55] OZENI A E, SIGAL R F. T1/T2 NMR surface relaxation ratio for hydrocarbons and brines in contact with mature organic-shale reservoir rocks[J]. Petrophysics, 2013, 54(1): 11-19.
    [56] WASHBURN K E, BIRDWELL J E, SEYMOUR J D, et al. Low-field nuclear magnetic resonance characterization of organic content in shales[C]//International Symposium of the Society of Core Analysts. Napa Valley, Canada: [s. n.], 2013.
    [57] FLEURY M, ROMERO-SARMIENTO M. Characterization of shales using T1-T2 NMR maps[J]. Journal of Petroleum Science and Engineering, 2016, 137: 55-62.
    [58] 李军, 金武军, 王亮, 等. 利用核磁共振技术确定有机孔与无机孔孔径分布: 以四川盆地涪陵地区志留系龙马溪组页岩气储层为例[J]. 石油与天然气地质, 2016, 37(1): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601019.htm

    LI Jun, JIN Wujun, WANG Liang, et al. Quantitative evaluation of organic and inorganic pore size distribution by NMR: a case from the Silurian Longmaxi Formation gas shale in Fuling area, Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(1): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601019.htm
    [59] 宁传祥, 姜振学, 高之业, 等. 用核磁共振和高压压汞定量评价储层孔隙连通性: 以沾化凹陷沙三下亚段为例[J]. 中国矿业大学学报, 2017, 46(3): 578-585. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201703017.htm

    NING Chuanxiang, JIANG Zhenxue, GAO Zhiye, et al. Quantitative evaluation of pore connectivity with nuclear magnetic resonance and high pressure mercury injection: a case study of the lower section of Es3 in Zhanhua Sag[J]. Journal of China University of Mining & Technology, 2017, 46(3): 578-585. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201703017.htm
    [60] 林会喜, 王圣柱, 杨艳艳, 等. 博格达地区中二叠统芦草沟组页岩油储集特征[J]. 断块油气田, 2020, 27(4): 418-423. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202004004.htm

    LIN Huixi, WANG Shengzhu, YANG Yanyan, et al. Shale oil reservoir characteristics of Middle Permian Lucaogou Formation in Bogda area[J]. Fault-Block Oil and Gas Field, 2020, 27(4): 418-423. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202004004.htm
    [61] 张世明. 东营凹陷页岩油赋存特征分子动力学模拟[J]. 油气地质与采收率, 2021, 28(5): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202105008.htm

    ZHANG Shiming. Molecular dynamics simulation of shale oil occurrence in Dongying Depression[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(5): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202105008.htm
    [62] JIA Zijian, XIAO Lizhi, WANG Zhizhan, et al. Magic echo for nuclear magnetic resonance characterization of shales[J]. Energy & Fuels, 2017, 31(8): 7824-7830.
    [63] SANDER R, PAN Zhejun, CONNELL L D. Laboratory measurement of low permeability unconventional gas reservoir rocks: a review of experimental methods[J]. Journal of Natural Gas Science and Engineering, 2016, 37: 248-279.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1467
  • HTML全文浏览量:  721
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-09
  • 修回日期:  2022-07-29
  • 刊出日期:  2022-09-28

目录

    /

    返回文章
    返回