Enrichment types and hydrocarbon composition characteristics of shale oil in the northern part of Dongpu Sag, Bohai Bay Basin: a case study of the third member of Paleogene Shahejie Formation of well Wen 410
-
摘要: 为研究渤海湾盆地东濮凹陷北部页岩油的含油性及烃类组成特征,对文410井古近系沙河街组三段岩心样品开展了冷冻热解、三维定量荧光、气相色谱—质谱、岩石薄片等分析测试。东濮凹陷北部沙三段主要发育夹层型和裂缝型2种页岩油富集类型,烃类赋存主要为粒间孔和微裂缝2种形式,有效孔缝组合是页岩油高效富集的关键;岩心样品抽提物烃类组成特征主要以低碳数正构烷烃为主,C27—C28—C29规则甾烷呈“V”型分布,反映出有机质来源主要为陆生高等植物与低等水生生物;伽马蜡烷含量较高,较低的Pr/Ph比值,反映该区有机质沉积环境主要为咸化的还原环境;结合C3122S/(22S+22R)、Ts/(Ts+Tm)、C29ααα20S/(20S+20R)、C29ββ/(αα+ββ)等参数,表明烃源岩处于成熟阶段。Abstract: To reveal the oil-bearing characteristics and hydrocarbon composition of shale oils in the third member of Shahejie Formation in the northern part of Dongpu Sag, Bohai Bay Basin, analysis and testing were carried out by the means of frozen-craching followed by pyrolysis, 3D quantitative fluorescence test, GC-MS and thin section observation. Two shale oil enrichment types including interlayer type and fracture type are mainly developed in the third member of Shahejie Formation of well Wen 410. The hydrocarbon mainly occurres in inter-granular pores and micro-fractures, and effective pore-fracture combination is the key to the efficient enrichment of shale oil. The hydrocarbon composition of rock extracts is mainly characterized by n-alkanes with low carbon numbers, and the regular steranes of C27-C28-C29 show a V-shaped distribution, reflecting that the sources of organic matter are mainly terrestrial higher plants and lower aquatic organisms. The high content of gammacerane and the low Pr/Ph ratio indicate that the sedimentary environment in this area is mainly a saline reducing environment. C3122S/(22S+22R), Ts/(Ts+Tm), C29ααα20S/(20S+20R), C29ββ/(αα+ββ) and other biomarker parameters indicate that the source rocks are at mature stage.
-
Key words:
- hydrocarbon composition /
- occurrence form /
- shale oil /
- Shahejie Formation /
- Paleogene /
- Dongpu Sag /
- Bohai Bay Basin
-
图 8 渤海湾盆地东濮凹陷北部文410井沙三段不同岩性典型含油样品镜下特征
a.长石发育溶蚀孔隙,棕色油斑粉砂岩,3 570.74 m,扫描电镜;b.石英次生加大Ⅰ-Ⅱ级,粒间白云石,棕色油斑粉砂岩,3 570.74 m,扫描电镜;c.长石发育溶蚀孔隙,深灰色泥质白云岩,3 566.60 m,扫描电镜;d.白云石发育少量溶蚀孔隙、石盐、黏土矿物充填式胶结,深灰色泥质白云岩,3 566.60 m,扫描电镜;e.见有机质,部分浸染碎屑,棕色油斑粉砂岩,3 570.74 m,荧光薄片;f.沥青主要分布于粒间,呈斑块状、点状,以亮蓝色、黄褐色为主,发光强度较亮,为油质沥青,棕色油斑粉砂岩,3 570.74 m,荧光薄片;g.见有机质,部分浸染碎屑,见构造缝,深灰色泥质白云岩,3 566.60 m,荧光薄片;h.构造缝呈淡黄色、淡蓝色,发光强度较亮,为油质沥青,深灰色泥质白云岩,3 566.60 m,荧光薄片
Figure 8. Microscopic characteristics of typical oil-bearing samples with different lithologies from third member of Shahejie Formation in well Wen 410, northern part of Dongpu Sag, Bohai Bay Basin
表 1 渤海湾盆地东濮凹陷北部文410井沙三段烃源岩抽提物烷烃参数
Table 1. Alkane parameters of source rock sample extracts from third member of Shahejie Formation in well Wen 410, northern part of Dongpu Sag, Bohai Bay Basin
深度/m 岩性 CPI Pr/Ph Pr/nC17 Ph/nC18 3 546.84 灰色灰质泥岩 1.15 1.35 0.84 0.99 3 556.75 深灰色粉砂质泥岩夹砂岩条带 1.00 1.49 0.42 0.59 3 566.60 深灰色泥岩 0.99 0.80 0.16 0.20 3 567.12 深灰色泥质白云岩 1.00 0.85 0.16 0.19 3 570.52 棕色油斑粉砂岩 0.97 0.18 0.37 1.56 3 573.81 棕色油斑粉砂岩 0.98 0.36 0.47 1.71 3 574.12 深灰色泥岩 0.98 0.30 0.61 2.96 3 579.04 灰色泥质粉砂岩 0.80 0.20 0.45 2.09 3 583.93 深灰色页岩 0.89 0.20 0.36 2.00 3 588.36 灰色白云质泥岩 0.97 0.37 0.18 0.49 3 589.00 灰色白云质泥岩 0.98 0.35 0.18 0.47 3 589.95 灰色泥岩 0.96 0.37 0.17 0.46 3 596.17 深灰色泥岩 0.93 1.00 0.27 0.48 表 2 渤海湾盆地东濮凹陷北部文410井沙三段烃源岩抽提物藿烷和芳香烃系列化合物相关参数
Table 2. Selected parameters related to hopanes and aromatic hydrocarbon of source rock extracts from third member of Shahejie Formation in well Wen 410, northern part of Dongpu Sag, Bohai Bay Basin
深度/m C30莫烷/C30藿烷 C3122S/(22S+22R) Ts/(Ts+Tm) Ga/C30H C27重排/规则甾烷 C29ααα20S/(20S+20R) C29ββ/(αα+ββ) MPI1 Rc 3 566.60 0.12 0.58 0.43 0.20 0.74 0.48 0.46 0.35 0.61 3 567.12 0.06 0.60 0.44 0.10 0.59 0.48 0.47 0.35 0.61 3 570.52 0.14 0.59 0.23 0.50 0.18 0.52 0.40 0.42 0.65 3 573.81 0.02 0.61 0.56 0.41 0.37 0.53 0.49 0.41 0.65 3 574.12 0.10 0.61 0.60 0.36 0.40 0.52 0.50 0.44 0.66 3 579.04 0.13 0.56 0.24 0.67 0.17 0.50 0.41 0.51 0.71 3 583.93 0.13 0.57 0.49 0.84 0.26 0.51 0.46 0.45 0.67 3 588.36 0.12 0.56 0.47 0.34 0.42 0.46 0.48 0.42 0.65 3 589.00 0.12 0.56 0.48 0.37 0.41 0.45 0.46 0.43 0.66 3 589.95 0.12 0.57 0.37 0.32 0.42 0.55 0.43 0.41 0.65 3 596.17 0.02 0.61 0.60 0.16 0.17 0.52 0.53 0.31 0.59 -
[1] JARVIE D M. Shale resource systems for oil and gas: part 2—shale-oil resource systems[M]//BREYER J A. Shale Reservoirs: Giant Resources for the 21st Century. Tulsa: AAPG, 2012: 89-119. [2] 张廷山, 彭志, 杨巍, 等. 美国页岩油研究对我国的启示[J]. 岩性油气藏, 2015, 27(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201503001.htmZHANG Yanshan, PENG Zhi, YANG Wei, et al. Enlightenments of American shale oil research towards China[J]. Lithologic Reservoirs, 2015, 27(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201503001.htm [3] 王京, 刘琨. 俄罗斯致密油资源潜力和勘探开发现状[J]. 国际石油经济, 2017, 25(7): 80-88. https://www.cnki.com.cn/Article/CJFDTOTAL-GJJJ201707012.htmWANG Jing, LIU Kun. Russia's tight oil resources potential and E&D status[J]. International Petroleum Economics, 2017, 25(7): 80-88. https://www.cnki.com.cn/Article/CJFDTOTAL-GJJJ201707012.htm [4] 李婉君, 张金川, 荆铁亚, 等. 辽河西部凹陷页岩油聚集条件及有利区优选[J]. 特种油气藏, 2014, 21(1): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201401014.htmLI Wanjun, ZHANG Jinchuan, JING Tieya, et al. Shale oil accumulation conditions and optimization of favorable ureas in the West Liaohe Sag[J]. Special Oil & Gas Reservoirs, 2014, 21(1): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201401014.htm [5] 梁世君, 黄志龙, 柳波, 等. 马朗凹陷芦草沟组页岩油形成机理与富集条件[J]. 石油学报, 2012, 33(4): 588-594. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201204008.htmLIANG Shijun, HUANG Zhilong, LIU Bo, et al. Formation mechanism and enrichment conditions of Lucaogou Formation shale oil from Malang Sag, Santanghu Basin[J]. Acta Petrolei Sinica, 2012, 33(4): 588-594. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201204008.htm [6] 黎茂稳, 金之钧, 董明哲, 等. 陆相页岩形成演化与页岩油富集机理研究进展[J]. 石油实验地质, 2020, 42(4): 489-505. doi: 10.11781/sysydz202004489LI Maowen, JIN Zhijun, DONG Mingzhe, et al. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. Petroleum Geology & Experiment, 2020, 42(4): 489-505. doi: 10.11781/sysydz202004489 [7] 代波, 李二党, 王小军, 等. 基于烃源岩地化参数评价页岩油运聚规律[J]. 油气藏评价与开发, 2021, 11(4): 506-513. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202104005.htmDAI Bo, LI Erdang, WANG Xiaojun, et al. Evaluation of shale oil migration and accumulation rules based on geochemical parameters of source rocks[J]. Reservoir Evaluation and Development, 2021, 11(4): 506-513. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202104005.htm [8] 刘丽, 闵令元, 孙志刚, 等. 济阳坳陷页岩油储层孔隙结构与渗流特征[J]. 油气地质与采收率, 2021, 28(1): 106-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202101014.htmLIU Li, MIN Lingyuan, SUN Zhigang, et al. Pore structure and percolation characteristics in shale oil reservoir of Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(1): 106-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202101014.htm [9] 张鹏, 张金川, 刘鸿, 等. 东濮凹陷北部沙三中亚段页岩油成藏地质条件与有利区优选[J]. 山东科技大学学报(自然科学版), 2016, 35(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201603001.htmZHANG Peng, ZHANG Jinchuan, LIU Hong, et al. Geological conditions for accumulation and favorable area selection of shale oil in mid-submember of Es3 formation, northern Dongpu Depression[J]. Journal of Shandong University of Science and Technology (Natural Science), 2016, 35(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201603001.htm [10] 吕艳南, 张金川, 张鹏, 等. 东濮凹陷北部沙三段页岩油气形成及分布预测[J]. 特种油气藏, 2014, 21(4): 48-52. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201404011.htmLV Yannan, ZHANG Jinchuan, ZHANG Peng, et al. Shale oil/gas formation and distribution prediction in Sha-3 member of northern Dongpu Sag[J]. Special Oil & Gas Reservoirs, 2014, 21(4): 48-52. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201404011.htm [11] 刘宣威, 王学军, 李红磊, 等. 东濮凹陷古近系烃源岩特征及其形成环境分析[J]. 断块油气田, 2021, 28(4): 452-455. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202104005.htmLIU Xuanwei, WANG Xuejun, LI Honglei, et al. Characteristics and formation environment analysis of Paleogene source rocks in Dongpu Depression[J]. Fault-Block Oil and Gas Field, 2021, 28(4): 452-455. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202104005.htm [12] 耿师江, 徐田武, 鹿坤, 等. 东濮凹陷南部湖相油气特征与成因机制[J]. 断块油气田, 2020, 27(2): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202002002.htmGENG Shijiang, XU Tianwu, LU Kun, et al. Characteristics and genetic mechanism of lacustrine hydrocarbon in south of Dongpu Depression[J]. Fault-Block Oil and Gas Field, 2020, 27(2): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202002002.htm [13] 李浩, 陆建林, 王保华, 等. 渤海湾盆地东濮凹陷陆相页岩油可动性影响因素与资源潜力[J]. 石油实验地质, 2020, 42(4): 632-638. doi: 10.11781/sysydz202004632LI Hao, LU Jianlin, WANG Baohua, et al. Controlling factors of continental shale oil mobility and resource potential in Dongpu Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 632-638. doi: 10.11781/sysydz202004632 [14] 邓恩德, 张金川, 张鹏, 等. 东濮凹陷北部沙三上亚段页岩油成藏地质条件与有利区优选[J]. 山东科技大学学报(自然科学版), 2015, 34(3): 28-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201603001.htmDENG Ande, ZHANG Jinchuan, ZHANG Peng, et al. Geological condition and favorable areas of shale oil in upper-submember of Es3 formation in northern Dongpu Sag[J]. Journal of Shandong University of Science and Technology (Natural Science), 2015, 34(3): 28-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201603001.htm [15] 张晶, 鹿坤, 蒋飞虎, 等. 东濮凹陷页岩油气富集条件[J]. 断块油气田, 2015, 22(2): 184-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201502010.htmZHANG Jing, LU Kun, JIANG Feihu, et al. Enrichment condition of shale oil and gas in Dongpu Depression[J]. Fault-lock Oil & Gas Field, 2015, 22(2): 184-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201502010.htm [16] 黄爱华, 薛海涛, 王民, 等. 东濮凹陷沙三下亚段页岩油资源潜力评价[J]. 长江大学学报(自科版), 2017, 14(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201703001.htmHUANG Aihua, XUE Haitao, WANG Min, et al. Resource potential evaluation of Es3L shale oil in Dongpu Depression[J]. Journal of Yangtze University (Natural Science Edition), 2017, 14(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201703001.htm [17] 李红磊, 张云献, 周勇水, 等. 东濮凹陷优质烃源岩生烃演化机理[J]. 断块油气田, 2020, 27(2): 143-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202002003.htmLI Honglei, ZHANG Yunxian, ZHOU Yongshui, et al. Hydrocarbon evolution mechanism of high quality source rock in Dongpu Sag[J]. Fault-Block Oil and Gas Field, 2020, 27(2): 143-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202002003.htm [18] 陈发亮, 陈业全, 魏生祥, 等. 东濮凹陷盐湖盆地油气富集规律研究[J]. 盐湖研究, 2003, 11(4): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ200304005.htmCHEN Faliang, CHEN Yequan, WEI Shengxiang, et al. The research of regularity of hydrocarbon enrichment in Salt Basin of Dongpu Depression[J]. Journal of Salt Lake Research, 2003, 11(4): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ200304005.htm [19] 李健. 东濮凹陷深层异常温压条件下的油气生成特征[J]. 石油学报, 2003, 24(2): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200302005.htmLI Jian. Hydrocarbon generation features of deep formation in Dongpu Depression at abnormally high temperature and high pressure[J]. Acta Petrolei Sinica, 2003, 24(2): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200302005.htm [20] 陈发亮, 朱晖, 李绪涛, 等. 东濮凹陷下第三系沙河街组层序地层划分及盐岩成因探讨[J]. 沉积学报, 2000, 18(3): 384-388. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200003009.htmCHEN Faliang, ZHU Hui, LI Xutao, et al. Partition of sequence strata and discussion about salt-rock resource in Shahejie Formation of Eogene, Dongpu Depression[J]. Acta Sedimentologica Sinica, 2000, 18(3): 384-388. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200003009.htm [21] 余海波, 程秀申, 徐田武, 等. 东濮凹陷古近纪构造特征及其对油气成藏的控制作用[J]. 油气地质与采收率, 2021, 28(3): 42-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202103006.htmYU Haibo, CHENG Xiushen, XU Tianwu, et al. Paleogene tectonic characteristics and their controlling effect on hydrocarbon accumulation in Dongpu Sag[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(3): 42-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202103006.htm [22] 刘卫彬, 周新桂, 徐兴友, 等. 盐间超压裂缝形成机制及其页岩油气地质意义: 以渤海湾盆地东濮凹陷古近系沙河街组三段为例[J]. 石油勘探与开发, 2020, 47(3): 523-533. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003009.htmLIU Weibin, ZHOU Xingui, XU Xingyou, et al. Formation of inter-salt overpressure fractures and their significances to shale oil and gas: a case study of the third member of Paleogene Shahejie Formation in Dongpu Sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2020, 47(3): 523-533. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003009.htm [23] 彭君, 周勇水, 李红磊, 等. 渤海湾盆地东濮凹陷盐间细粒沉积岩岩相与含油性特征[J]. 断块油气田, 2021, 28(2): 212-218. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102013.htmPENG Jun, ZHOU Yongshui, LI Honglei, et al. Lithofacies and oil-bearing characteristics of fine-grained sedimentary rocks of salt-layers in Dongpu Sag, Bohai Bay Basin[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 212-218. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102013.htm [24] 蒋启贵, 黎茂稳, 钱门辉, 等. 页岩油探井现场地质评价实验流程与技术进展[J]. 石油与天然气地质, 2019, 40(3): 571-582. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903013.htmJIANG Qigui, LI Maiwen, QIAN Menhui, et al. Experimental procedures of well-site geological evaluation for shale oil and related technological progress[J]. Oil & Gas Geology, 2019, 40(3): 571-582. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903013.htm [25] 钱门辉, 蒋启贵, 黎茂稳, 等. 泥页岩三维定量荧光分析技术与应用[J]. 石油实验地质, 2020, 42(2): 311-318. doi: 10.11781/sysydz202002311QIAN Menhui, JIANG Qigui, LI Maowen, et al. Three-dimensional quantitative fluorescence analysis and application in shale[J]. Petroleum Geology & Experiment, 2020, 42(2): 311-318. doi: 10.11781/sysydz202002311 [26] LI Maowen, CHEN Zhuoheng, MA Xiaoxiao, et al. Shale oil resource potential and oil mobility characteristics of the Eocene-Oligocene Shahejie Formation, Jiyang Super-Depression, Bohai Bay Basin of China[J]. International Journal of Coal Geology, 2019, 204: 130-143. [27] 李志明, 芮晓庆, 黎茂稳, 等. 北美典型混合页岩油系统特征及其启示[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1060-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201504010.htmLI Zhiming, RUI Xiaoqing, LI Waowen, et al. Characteristics of typical hybrid shale-oil system in North America and its implications[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(4): 1060-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201504010.htm [28] 李守军. 正烷烃、姥鲛烷与植烷对沉积环境的指示意义: 以山东济阳坳陷下第三系为例[J]. 石油大学学报(自然科学版), 1999, 23(5): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX199905035.htmLI Shoujun. Sedimentary environmental significance of normal alkane and the ratio of pristane to phytane[J]. Journal of the Universityof Petroleum, China, 1999, 23(5): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX199905035.htm [29] SCALAN E S, SMITH J E. An improved measure of the odd-even predominance in the normal alkanes of sediment extracts and petroleum[J]. Geochimica et Cosmochimica Acta, 1970, 34(5): 611-620. [30] 刘莹, 展翅飞. 探究影响Pr/Ph值的地质因素及其生烃演化[J]. 中国石油和化工标准与质量, 2014, 34(5): 203. https://www.cnki.com.cn/Article/CJFDTOTAL-HGBJ201405199.htmLIU Ying, ZHAN Chifei. Explore the geological factors affecting the Pr/Ph and the evolution of hydrocarbon generation[J]. China Petroleum and Chemical Standard and Quality, 2014, 34(5): 203. https://www.cnki.com.cn/Article/CJFDTOTAL-HGBJ201405199.htm [31] SEIFERT W K, MOLDOWAN J M. The effect of thermal stress on source-rock quality as measured by hopane stereochemistry[J]. Physics and Chemistry of the Earth, 1980, 12: 229-237. [32] RULLKÖTTER J, MARZI R. Natural and artificial maturation of biological markers in a Toarcian shale from northern Germany[J]. Organic Geochemistry, 1988, 13(4/6): 639-645. [33] SAKSEN G H, BOHACS K M. Geological controls of source rock geochemistry through relative sea level; Triassic, Barents Sea[M]// KATZ B J. Petroleum Source Rocks. Berlin Heidelberg: Springer, 1995: 25-50. [34] ZUMBERGE J E. Terpenoid biomarker distributions in low maturity crude oils[J]. Organic Geochemistry, 1987, 11(6): 479-496. [35] 王章章, 李奇缘, 廖文春, 等. 生物标志物在探讨烃源岩及原油成熟度研究中的应用[J]. 地下水, 2016, 38(2): 213-215. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201602081.htmWANG Zhangzhang, LI Qiyuan, LIAO Wenchun, et al. Application of biomarkers in the study of maturity of source rock and crude oil[J]. Ground Water, 2016, 38(2): 213-215. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201602081.htm [36] HAVEN H L T, ROHMER M, RULLKÖTTER J, et al. Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments[J]. Geochimica et Cosmochimica Acta, 1989, 53(11): 3073-3079. [37] 张立平, 黄第藩, 廖志勤. 伽马蜡烷—水体分层的地球化学标志[J]. 沉积学报, 1999, 17(1): 136-140. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB901.021.htmZHANG Liping, HUANG Difan, LIAO Zhiqin. Gammacerane-geochemical indicator of water column stratification[J]. Acta Sedimentologica Sinica, 1999, 17(1): 136-140. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB901.021.htm [38] VAN KAAM-PETERS H M E, KÖSTER J, VAN DER GAAST S J, et al. The effect of clay minerals on diasterane/sterane ratios[J]. Geochimica et Cosmochimica Acta, 1998, 62(17): 2923-2929. [39] 黄第藩, 张大江, 李晋超. 论4-甲基甾烷和孕甾烷的成因[J]. 石油勘探与开发, 1989, 16(3): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198903001.htmHUANG Difan, ZHANG Dajiang, LI Jinchao. On origin of 4-ethyl steranes and pregnanes[J]. Petroleum Expoloration and Deve-lopment, 1989, 16(3): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198903001.htm [40] 马安来, 金之钧, 朱翠山. 塔里木盆地塔河油田奥陶系原油成熟度及裂解程度研究[J]. 天然气地球科学, 2017, 28(2): 313-323. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702015.htmMA Anlai, JIN Zhijun, ZHU Cuishan. Maturity and oil-cracking of the Ordovician oils from Tahe Oilfield, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2017, 28(2): 313-323. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702015.htm [41] RADKE M, WELTE D H. The methylphenanthrene index (MPI): a maturity parameter based on aromatic hydrocarbons[M]//BJOROY M. Advances in Organic Geochemistry 1981. Chichester: Wiley, 1983: 504-512.