Classification of shale lithofacies from Ordovician Wufeng Formation to first section of first member of Silurian Longmaxi Formation, western Changning area, Sichuan Basin, and its significance
-
摘要: 四川盆地长宁地区上奥陶统五峰组—下志留统龙马溪组页岩作为目前页岩气勘探开发的重点目标已取得重大突破。为明确长宁西部地区岩相差异、纵横向分布规律、储层发育特征及其影响因素,基于岩心、X衍射测试、扫描电镜以及各类分析测试资料对长宁西部地区五峰组—龙马溪组龙一1亚段的页岩岩相进行了细致研究。研究区主要发育硅质页岩相、混合硅质页岩相、含灰硅质页岩相、含黏土硅质页岩相、混合质页岩相、含黏土/硅混合质页岩相以及含灰/硅混合质页岩相7种岩相。其中主要分布在龙一1亚段底部的硅质页岩相因其具有高TOC含量、高孔隙度和高含气性,是研究区最为优质的页岩岩相;其次五峰组沉积时期和龙一1亚段沉积晚期发育的混合硅质页岩相、含灰硅质页岩相、含灰/硅混合质页岩相和含黏土/硅混合质页岩相,在储层条件上稍差于硅质页岩相,为研究区中等的页岩岩相。综合分析认为,五峰组—龙马溪组龙一1亚段页岩优势岩相储层形成可能受2个因素共同控制,一是上层富氧而下层缺氧—还原的沉积环境,该类型的沉积环境能够提供大量富有机质的硅质矿物;其次,在后期成岩作用中,充足的富有机质硅质矿物能为储层提供优异的孔隙类型。研究结果将为长宁西部地区页岩气富集区提供岩相学支撑,有利于四川盆地五峰组—龙马溪组海相页岩气的下一步勘探。Abstract: Shale gas exploration has been successfully carried out in the Upper Ordovician Wufeng Formation to the Lower Silurian Longmaxi Formation of the Changning area of Sichuan Basin. To clarify the lithofacies differences, vertical and horizontal distribution signatures, reservoir development characteristics and influencing factors in the western part of Changning area, based on core X-ray diffraction test, scanning electron microscopic observation and various analytical test data, the shale lithofacies of the Wufeng Formation (O3w) to the first section of the first member of Longmaxi Formation (S1l11) were studied in detail. Seven lithofacies in the study area were recognized including siliceous shale, mixed siliceous shale, carbonate-rich siliceous shale, clay-rich siliceous shale, mixed shale, argillaceous/siliceous mixed shale and calcareous/siliceous shale. The siliceous shale facies developed at the bottom of S1l11 is the best shale lithofacies in the study area since its TOC content, porosity and gas-bearing capacity are all higher than those of others. The mixed siliceous shale, carbonate-rich siliceous shale, calcareous/siliceous mixed shale and argillaceous/siliceous mixed shale in O3w and the upper S1l11 are slightly poorer than siliceous shale in terms of reservoir conditions, which are the sub-optimal lithofacies in the study area. Comprehensive analyses showed that the formation of dominant shale lithofacies reservoirs in O3w and S1l11 may be controlled by two factors. One is the sedimentary environment rich in oxygen in the upper layer and hypoxic and reducing in the lower layer, which provided a large amount of organic-rich siliceous minerals. Secondly, abundant organic-rich siliceous minerals provided excellent pore types for reservoirs during late diagenesis. The results will provide lithographic support for the studies of shale gas enrichment zones in the western Changning area, and are conducive to the further exploration of marine shale gas in O3w and S1l11 in the Sichuan Basin.
-
图 1 四川盆地长宁西部地区构造背景[14]及地层划分
Figure 1. Tectonic setting and stratigraphic division of western Changning area, Sichuan Basin
图 2 四川盆地长宁西部地区页岩矿物组成三端元图解
黏土质页岩相:M-1(黏土质页岩相);CM-2(混合黏土质页岩相);CM-3(含灰黏土质页岩相);CM-4(含硅黏土质页岩相); 灰质页岩相:C-1(灰质页岩相);C-2(混合灰质页岩相);C-3(含硅灰质页岩相);C-4(含黏土灰质页岩相); 硅质页岩相:S-1(硅质页岩相);S-2(混合硅质页岩相);S-3(含灰硅质页岩相);S-4(含黏土硅质页岩相); 混合质页岩相:M-1(含灰/硅混合质页岩相);M-2(混合质页岩相);M-3(含黏土/灰混合质页岩相);M-4(含黏土/硅混合质页岩相)
Figure 2. Diagram of three endmembers of shale mineral composition in western Changning area, Sichuan Basin
图 3 四川盆地长宁西部地区五峰组—龙马溪组龙一1亚段页岩主要岩相岩心特征
a.硅质页岩相(S-1),发育条带状黄铁矿,Y5井,3小层,3 920.26~3 920.46 m;b.硅质页岩相(S-1),笔石发育,丰度为70%~80%,形态完整,杂乱分布,Y2井,1小层,3 515.51~3 515.58 m;c.混合硅质页岩相(S-2),顶部见顺层黄铁矿层和结核,部分发生应力变形,Y2井,4小层,3 495.00~3 495.12 m;d.混合硅质页岩相(S-2),高角度裂缝发育,方解石胶结,Y2井,4小层,3 501.99~3 502.20 m;e.含灰硅质页岩相(S-3),黄铁矿纹层状发育,Y3井,2小层,3 883.96~3 884.07 m;f.含黏土硅质页岩相(S-4),见高角度断层面,被方解石胶结,Y2井,3小层,3 504.28~3 504.47 m;g.含灰/硅混合质页岩相(M-1),Y3井,4小层,3 863.12~3 863.29 m;h.混合质页岩相(M-2),偶见黄铁矿结核,Y3井,4小层,3 874.59~3 874.75 m;i.含黏土/硅混合质页岩相(M-4),纹层发育,裂缝发育,多为方解石充填,Y5井,4小层,3 887.76~3 888.9 m
Figure 3. Core characteristics of main lithofacies of shale in O3w and S1l11 in western Changning area, Sichuan Basin
图 4 长宁西部地区五峰组—龙马溪组龙一1亚段页岩主要岩相镜下特征
a.硅质页岩相(S-1),大量硅质石英成层发育,有机质层状富集,Y2井,1小层,3 515.51 m;b.硅质页岩相(S-1),石英纹层和黏土纹层交替穿插,Y2井,1小层,3 515.75 m;c.混合硅质页岩相(S-2),被方解石充填的裂缝,Y2井,2小层,3 512.17 m;d.混合硅质页岩相(S-2),有机质层状富集,裂缝发育,Y2井,2小层,3 511.26 m;e.混合硅质页岩相(S-2),孔、缝发育,Y2井,3小层,3 508.24 m;f.含灰/硅混合质(M-1),石英颗粒均匀分布,泥粉晶白云石方解石零星分布,Y2井,4小层,3 485.39 m
Figure 4. Lithofacies characteristics of shale in O3w and S1l11 in western Changning area, Sichuan Basin
图 8 四川盆地长宁西部地区五峰组—龙一1亚段孔隙特征
a.硅质页岩相(S-1),大量发育有机质孔隙,Y2井,1小层,实测TOC含量4.25%,3 515.51 m;b.混合硅质页岩相(S-2),有机质孔隙较为发育,Y2井,2小层,实测TOC含量2.3%,3 511.26 m;c.硅质页岩相(S-1),黄铁矿晶间孔,Y2井,1小层,实测TOC含量4.2%,3 515.75 m;d.硅质页岩相(S-1),硅质矿物中的粒内孔隙,Y2井,实测TOC含量4.2%,3 515.75 m
Figure 8. Pore characteristics of O3w and S1l11 in western Changning area, Sichuan Basin
表 1 四川盆地长宁西部地区五峰组—龙一1亚段页岩岩相主要特征对比
Table 1. Main characteristics of shale lithofacies in O3w and S1l11 in western Changning area, Sichuan Basin
岩相类型 平均TOC含量/% 平均孔隙度/% 平均含气量/(m3·t-1) 总体评价 硅质页岩相 4.03 6.85 2.22 优质 混合硅质页岩相 2.85 4.76 2.04 中等 含灰硅质页岩相 2.55 4.85 2.12 中等 含黏土硅质页岩相 2.68 5.31 1.85 差 含灰/硅混合质页岩相 2.77 4.36 2.12 中等 混合质页岩相 2.21 4.59 1.60 最差 含黏土/硅混合质页岩相 3.11 4.73 2.11 中等 -
[1] 王程伟, 李蕾, 苏玉亮, 等. 页岩气低速渗流特征分析及影响因素研究[J]. 特种油气藏, 2020, 27(1): 136-141. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202001020.htmWANG Chengwei, LI Lei, SU Yuliang, et al. Low-velocity shale gas seepage analysis and influencing factors[J]. Special Oil & Gas Reserviors, 2020, 27(1): 136-141. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202001020.htm [2] 林会喜, 宋明水, 王圣柱, 等. 叠合盆地复杂构造带页岩油资源评价: 以准噶尔盆地东南缘博格达地区中二叠统芦草沟组为例[J]. 油气地质与采收率, 2020, 27(2): 7-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202002003.htmLIN Huixi, SONG Mingshui, WANG Shengzhu, et al. Shale oil resource evaluation in complex structural belt of superimposed basin: a case study of middle Permian Lucaogou Formation in Bogda area, southeast margin of Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2): 7-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202002003.htm [3] 郭少斌, 王子龙, 马啸. 中国重点地区二叠系海陆过渡相页岩气勘探前景[J]. 石油实验地质, 2021, 43(3): 377-385. doi: 10.11781/sysydz202103377GUO Shaobin, WANG Zilong, MA Xiao. Exploration prospect of shale gas with Permian transitional facies of some key areas in China[J]. Petroleum Geology & Experiment, 2021, 43(3): 377-385. doi: 10.11781/sysydz202103377 [4] KRUMBEIN W C. Lithofacies maps and regional sedimentary-stratigraphic analysis[J]. AAPG Bulletin, 1948, 32(10): 1909-1923. [5] WANG Guochang, CARR T R. Methodology of organic-rich shale lithofacies identification and prediction: a case study from Marcellus shale in the Appalachian Basin[J]. Computers & Geosciences, 2012, 49: 151-163. [6] 李志明, 全秋琦. 中国南部奥陶—志留纪笔石页岩相类型及其构造古地理[J]. 地球科学: 中国地质大学学报, 1992, 17(3): 261-269. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199203003.htmLI Zhiming, QUAN Qiuqi. Lithofacies types and tectonic palaeo-geography of Ordovician and Silurian graptolite-bearing strata in South China[J]. Earth Science: Journal of China University of Geosciences, 1992, 17(3): 261-269. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199203003.htm [7] 梁超, 姜在兴, 杨镱婷, 等. 四川盆地五峰组—龙马溪组页岩岩相及储集空间特征[J]. 石油勘探与开发, 2012, 39(6): 691-698. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201206007.htmLIANG Chao, JIANG Zaixing, YANG Yiting, et al. Characteristics of shale lithofacies and reservoir space of the Wufeng-Longmaxi formation, Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(6): 691-698. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201206007.htm [8] 李明隆, 谭秀成, 李延钧, 等. 页岩岩相划分及含气性评价: 以滇黔北地区五峰组—龙马溪组为例[J]. 断块油气田, 2021, (06): 727-732. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202106003.htmLI Minglong, TAN Xiucheng, LI Yanjun, et al. Shale lithofacies classification and evaluation of gas-bearing property: a case study of the Wufeng-Longmaxi Formation in northern Yunnan and Guizhou[J]. Fault-Block Oil and Gas Field, 2021, (06): 727-732. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202106003.htm [9] WANG Ziyi, CHEN Lei, CHEN Dongxia, et al. Characterization and evaluation of shale lithofacies within the lowermost Longmaxi-Wufeng formation in the southeast Sichuan Basin[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107353. [10] LI Yanjun, LI Minglong, ZHANG Jiehui, et al. Influence of the Emeishan basalt eruption on shale gas enrichment: a case study of shale from Wufeng-Longmaxi formations in northern Yunnan and Guizhou provinces[J]. Fuel, 2020, 282: 118835. [11] 李皎, 何登发, 梅庆华. 四川盆地及邻区奥陶纪构造—沉积环境与原型盆地演化[J]. 石油学报, 2015, 36(4): 427-445. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201504004.htmLI Jiao, HE Dengfa, MEI Qinghua. Tectonic-depositional environment and proto-type basins evolution of the Ordovician in Sichuan Basin and adjacent areas[J]. Acta Petrolei Sinica, 2015, 36(4): 427-445. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201504004.htm [12] LIANG Chao, JIANG Zaixing, CAO Yingchang, et al. Sedimentary characteristics and paleoenvironment of shale in the Wufeng-Longmaxi formation, north Guizhou Province, and its shale gas potential[J]. Journal of Earth Science, 2017, 28(6): 1020-1031. [13] 赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组—龙马溪组页岩岩相类型与沉积环境[J]. 石油学报, 2016, 37(5): 572-586. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201605002.htmZHAO Jianhua, JIN Zhijun, JIN Zhenkui, et al. Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(5): 572-586. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201605002.htm [14] 王秀平, 牟传龙, 葛详英, 等. 川南及邻区龙马溪组黑色岩系矿物组分特征及评价[J]. 石油学报, 2015, 36(2): 150-162. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201502003.htmWANG Xiuping, MOU Chuanlong, GE Xiangying, et al. Mineral component characteristics and evaluation of black rock series of Longmaxi Formation in southern Sichuan and its periphery[J]. Acta Petrolei Sinica, 2015, 36(2): 150-162. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201502003.htm [15] 吴蓝宇, 胡东风, 陆永潮, 等. 四川盆地涪陵气田五峰组—龙马溪组页岩优势岩相[J]. 石油勘探与开发, 2016, 43(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htmWU Lanyu, HU Dongfeng, LU Yongchao, et al. Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in Fuling gas field of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htm [16] 王玉满, 董大忠, 李新景, 等. 四川盆地及其周缘下志留统龙马溪组层序与沉积特征[J]. 天然气工业, 2015, 35(3): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201503004.htmWANG Yuman, DONG Dazhong, LI Xinjing, et al. Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in the Sichuan Basin and its peripheral areas[J]. Natural Gas Industry, 2015, 35(3): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201503004.htm [17] 李延钧, 刘欢, 张烈辉, 等. 四川盆地南部下古生界龙马溪组页岩气评价指标下限[J]. 中国科学: 地球科学, 2013, 43(7): 1088-1095. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201307002.htmLI Yanjun, LIU Huan, ZHANG Liehui, et al. Lower limits of evaluation parameters for the Lower Paleozoic Longmaxi shale gas in southern Sichuan Province[J]. Science China Earth Sciences, 2013, 56(5): 710-717. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201307002.htm [18] HAO Fang, ZOU Huayao, LU Yongchao. Mechanisms of shale gas storage: implications for shale gas exploration in China[J]. AAPG Bulletin, 2013, 97(8): 1325-1346. [19] 赵迪斐, 郭英海, 杨玉娟, 等. 渝东南下志留统龙马溪组页岩储集层成岩作用及其对孔隙发育的影响[J]. 古地理学报, 2016, 18(5): 843-856. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201605014.htmZHAO Difei, GUO Yinghai, YANG Yujuan, et al. Shale reservoir diagenesis and its impacts on pores of the Lower Silurian Longmaxi Formation in southeastern Chongqing[J]. Journal of Palaeogeography, 2016, 18(5): 843-856. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201605014.htm [20] 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htmZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm [21] 郭少斌, 黄磊. 页岩气储层含气性影响因素及储层评价: 以上扬子古生界页岩气储层为例[J]. 石油实验地质, 2013, 35(6): 601-606. doi: 10.11781/sysydz201306601GUO Shaobin, HUANG Lei. Gas-bearing influential factors and evaluation of shale gas reservoir: a case study of Paleozoic shale gas reservoir in Upper Yangtze region[J]. Petroleum Geology & Experiment, 2013, 35(6): 601-606. doi: 10.11781/sysydz201306601 [22] 韩超. 蜀南地区上奥陶统—下志留统页岩气储层特征及评价[D]. 北京: 中国地质大学(北京), 2016.HAN Chao. Shale gas reservoir characteristics and evaluation of the Upper Ordovician and Lower Silurian in the southern Sichuan[D]. Beijing: China University of Geosciences (Beijing), 2016. [23] 卢畅, 陈雷, 杨扬, 等. 页岩地球化学特征及沉积环境分析: 以川南长宁地区五峰组—龙马溪组为例[J]. 断块油气田, 2021, (06): 721-726. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202106002.htmLU Chang, CHEN Lei, YANG Yang, et al. Geochemical characteristics and sedimentary environment of shale reservoir: a case study of the Wufeng-Longmaxi Formation in the Changning area, Southern Sichuan Basin[J]. Fault-Block Oil and Gas Field, 2021, (06): 721-726. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202106002.htm [24] 耿一凯. 川东南地区龙马溪组页岩储层质量控制因素研究[D]. 北京: 中国石油大学(北京), 2017.GENG Yikai. Controlling factors on quality of shale reservoir of Longmaxi Formation in the southeastern Sichuan Basin[D]. Beijing: China University of Petroleum (Beijing), 2017. [25] 刘惟庆. 鄂西地区上二叠统大隆组富有机质页岩岩相与储层特征研究[D]. 武汉: 中国地质大学, 2019.LIU Weiqing. Study of the organic matter shales lithofacies and reservoir characteristics of the Upper Permian Dalong Formation in western Hubei[D]. Wuhan: China University of Geosciences, 2019. [26] CHEN Lei, LU Yongchao, LI Jianqing, et al. Comparative study on the Lower Silurian Longmaxi marine shale in the Jiaoshiba shale gas field and the Pengshui area in the southeast Sichuan Basin, China[J]. Geosciences Journal, 2020, 24(1): 61-71. [27] CHEN Lei, LU Yongchao, JIANG Shu, et al. Heterogeneity of the Lower Silurian Longmaxi marine shale in the southeast Sichuan Basin of China[J]. Marine and Petroleum Geology, 2015, 65: 232-246. [28] 王淑芳, 董大忠, 王玉满, 等. 四川盆地南部志留系龙马溪组富有机质页岩沉积环境的元素地球化学判别指标[J]. 海相油气地质, 2014, 19(3): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201403005.htmWANG Shufang, DONG Dazhong, WANG Yuman, et al. Geochemistry evaluation index of redox-sensitive elements for depositional environments of Silurian Longmaxi organic-rich shale in the south of Sichuan Basin[J]. Marine Origin Petroleum Geology, 2014, 19(3): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201403005.htm [29] 刘金. 柴达木盆地北缘东段克鲁克组泥页岩岩相及储层特征研究[D]. 青岛: 中国石油大学(华东), 2015.LIU Jin. Study on characteristics of shale lithofacies and reservior in Keluke Formation of northeast margin of Qaidam Basin[D]. Qingdao: China University of Petroleum (East China), 2015. [30] 刘树根, 马文辛, LUBA J, 等. 四川盆地东部地区下志留统龙马溪组页岩储层特征[J]. 岩石学报, 2011, 27(8): 2239-2252. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201605006.htmLIU Shugen, MA Wenxin, LUBA J, et al. Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, east Sichuan Basin, China[J]. Acta Petrologica Sinica, 2011, 27(8): 2239-2252. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201605006.htm [31] 王秀平, 牟传龙, 王启宇, 等. 川南及邻区龙马溪组黑色岩系成岩作用[J]. 石油学报, 2015, 36(9): 1035-1047. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201509002.htmWANG Xiuping, MOU Chuanlong, WANG Qiyu, et al. Diagenesis of black shale in Longmaxi Formation, southern Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2015, 36(9): 1035-1047. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201509002.htm [32] 万远飞, 秦启荣, 范宇, 等. 长宁背斜龙马溪组页岩裂缝发育特征及期次解析[J]. 特种油气藏, 2021, 28(1): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202101008.htmWAN Yuanfei, QIN Qirong, FAN Yu, et al. Development characteristics of shale fractures in Longmaxi Formation of Changning Anticline and the stage analysis[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202101008.htm