Geochemical characteristics and resource potential of source rocks in Aixi Sag, Yingen-Ejinaqi Basin
-
摘要: 为明确银额盆地艾西凹陷烃源岩条件和油气资源潜力,基于2口探井泥岩样品的测试分析资料,对烃源岩开展系统的评价研究,对有效烃源岩进行预测,在此基础上分析油气资源潜力。艾西凹陷潜在烃源岩为发育于白垩系乌兰苏海组(K2w)、银根组(K1y)、苏红图组(K1s)、巴音戈壁组三段(K1b3)、二段(K1b2)和一段(K1b1)的泥岩,其中K1b3、K1b2和K1b1泥岩有机质丰度最高,其有机质类型均偏腐殖型(Ⅱ型—Ⅲ型),成熟度均达到成熟热演化阶段。元素地球化学和生物标志化合物资料表明,烃源岩沉积期的古气候温暖湿润,沉积水体主要为淡水,陆源高等植物的生源贡献占优势。有利于有机质富集的沉积环境为盐度较高、还原性较强的环境,高生产力是有机质富集的主要控制因素。厘定了研究区有效烃源岩的TOC含量下限值为0.85%,有效烃源岩主要发育于K1b3、K1b2和K1b1,它们在南凹漕带、中凹漕带、北凹漕带和西凹漕带具有一定面积的分布。估算出研究区的油气总资源量为5 091.05×104 t,结合活跃的油气显示证据,认为研究区具有较好的油气勘探潜力。Abstract: In order to clarify the source rock conditions and oil/gas potential of the Aixi Sag in the Yingen-Ejinaqi Basin, based on the analytical results of mudstone samples from two exploratory wells, a systematic evaluation of the source rocks was carried out in this paper, and the effective source rocks were supposed. The potential source rocks in the study area are mudstones developed in Cretaceous Wulansuhai Formation (K2w), Yingen Formation (K1y), Suhongtu Formation (K1s), and the third (K1b3), second (K1b2) and first member (K1b1) of Bayingebi Formation, among which the K1b3, K1b2 and K1b1 mudstones have the highest abundance of organic matter with the kerogen types of Ⅱ-Ⅲ at mature stages of thermal evolution. Elemental geochemical and biomarker data show that the paleoclimate during the deposition of source rocks was warm and humid, the sedimentary water was mainly fresh water, and the contribution of terrestrial organic matter was dominant. The favorite sedimentary paleoenvironment conducive to organic matter enrichment is high salinity and strong reducibility, and high productivity is the main controlling factor for the enrichment of organic matter. The lowest limit of TOC content of effective source rocks is supposed to be 0.85%, and the effective source rocks are mainly developed in K1b3, K1b2 and K1b1. They are mainly distributed in considerable areas in the southern, central, northern and western subsags. The total oil and gas resources in the study area are estimated to be around 5 091.05×104 t. Combined with the evidence of active oil and gas display, it is concluded that the study area has good oil and gas exploration potential.
-
图 7 银额盆地艾西凹陷烃源岩Sr/Ba与Sr的相关关系
底图据文献[14]。
Figure 7. Relationship between Sr/Ba and Sr of source rocks in Aixi Sag, Yingen-Ejinaqi Basin
表 1 银额盆地艾西凹陷泥岩厚度统计
Table 1. Thickness of mudstones in Aixi Sag, Yingen-Ejinaqi Basin
层位 A1井 A2井 潜在烃源岩岩性 泥岩累计厚度/m 暗色泥岩累计厚度/m 潜在烃源岩岩性 泥岩累计厚度/m 暗色泥岩累计厚度/m K2w 灰色泥岩 311 19 灰色灰质泥岩为主 304 194 K1y 灰色泥岩 230 92 灰色灰质泥岩为主 141 27 K1s 灰色泥岩和灰色粉砂质泥岩 289 73 灰色含灰泥岩等 420 122 K1b3 灰色粉砂质泥岩为主 303 60 灰色泥岩等 81 77 K1b2 灰色泥岩和灰色粉砂质泥岩 38 38 灰色粉砂质泥岩等 13 13 K1b1 灰色粉砂质泥岩 58 58 2 表 2 银额盆地艾西凹陷泥岩地球化学数据
Table 2. Geochemical data of mudstones in Aixi Sag, Yingen-Ejinaqi Basin
层位 ω(TOC)/% 氯仿沥青“A”/% 岩石热解参数 Ro/% (S1+S2)/(mg.g-1) IH/(mg.g-1) Tmax/℃ 全部样品 去除ω(TOC) < 0.6%的样品 K2w $\frac{0.01 \sim 2.57}{0.34 / 36} $ $\frac{0.02 \sim 16.19}{0.80 / 36} $ $ \frac{9 \sim 871}{123 / 36}$ $ \frac{403 \sim 500}{450 / 36}$ $ \frac{421 \sim 442}{432 / 7}$ K1y $\frac{0.03 \sim 0.62}{0.17 / 55} $ $ \frac{0.009}{0.009 / 1}$ $\frac{0.01 \sim 0.23}{0.08 / 55} $ $\frac{6 \sim 435}{69 / 55} $ $ \frac{344 \sim 554}{444 / 55}$ $\frac{422 \sim 445}{434 / 6} $ $\frac{0.34}{0.34 / 1} $ K1s $\frac{0.01 \sim 2.67}{0.25 / 142} $ $ \frac{0.042}{0.042 / 1}$ $ \frac{0.01 \sim 3.14}{0.18 / 142}$ $\frac{2 \sim 889}{196 / 142} $ $ \frac{336 \sim 538}{425 / 142}$ $ \frac{405 \sim 451}{436 / 20}$ $ \frac{0.52}{0.52 / 1}$ K1b3 $\frac{0.35 \sim 1.77}{0.74 / 85} $ $\frac{0.053 \sim 0.071}{0.062 / 2} $ $\frac{0.56 \sim 16.49}{3.19 / 85} $ $\frac{25 \sim 1040}{155 / 85} $ $\frac{341 \sim 479}{425 / 85} $ $\frac{428 \sim 447}{441 / 16} $ $\frac{0.69 \sim 0.78}{0.74 / 2} $ K1b2 $ \frac{0.27 \sim 1.83}{0.78 / 31}$ $\frac{0.08 \sim 10.30}{2.82 / 31} $ $\frac{53 \sim 499}{128 / 31} $ $\frac{417 \sim 464}{442 / 31} $ $\frac{436 \sim 455}{443 / 7} $ K1b1 $\frac{0.28 \sim 2.36}{0.67 / 48} $ $\frac{0.068}{0.068 / 1} $ $\frac{0.32 \sim 12.12}{2.24 / 48} $ $\frac{64 \sim 258}{121 / 48} $ $\frac{419 \sim 456}{442 / 48} $ $\frac{436 \sim 456}{445 / 26} $ $\frac{1.00}{1.00 / 1} $ 注:表中分式的意义为:$ \frac{\text { “最小值~最大值” }}{\text { 平均值/统计个数。 }}$ 表 3 银额盆地艾西凹陷单井有效烃源岩厚度统计
Table 3. Thickness of effective source rocks of single wells in Aixi Sag, Yingen-Ejinaqi Basin
层位 A1井 A2井 单层厚度/m 层数 累计厚度/m 单层厚度/m 层数 累计厚度/m K2w 0 0 0 1~2 3 4 K1y 0 0 0 0 0 0 K1s 0 0 0 1~2 5 6 K1b3 0 0 0 3~4 6 22 K1b2 4~20 3 29 2~5 4 13 K1b1 3~10 5 34 0 0 0 表 4 银额盆地艾西凹陷各层位资源量计算
Table 4. Oil resource calculation of Aixi Sag, Yingen-Ejinaqi Basin
层位 S/km2 H/km d/(108t·km-3) A/% K1 K2 Q/104 t K1b3 646.45 0.025 24 0.91 0.25 0.20 1 764.81 K1b2 685.89 0.030 25 0.87 0.25 0.20 2 237.72 K1b1 470.41 0.020 26 0.89 0.25 0.20 1 088.53 -
[1] 耿师江, 周勇水, 王亚明, 等. 银额盆地查干凹陷稠油油藏特征及成因[J]. 断块油气田, 2021, (04): 463-469. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202104007.htmGENG Shijiang, ZHOU Yongshui, WANG Yaming, et al. The characteristics and genesis of heavy oil reservoir in Chagan Sag, Yingen-Ejinaqi Basin[J]. Fault-Block Oil and Gas Field, 2021, (04): 463-469. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202104007.htm [2] 蒋航, 曾德铭, 刘护创, 等. 银额盆地拐子湖凹陷北部烃源岩特征及控制因素[J]. 特种油气藏, 2020, 27(4): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202004005.htmJIANG Hang, ZENG Deming, LIU Huchuang, et al. Source-rock characterization and main-controlling factors in the northern Guaizihu Depression of Yin'e Basin[J]. Special Oil & Gas Reserviors, 2020, 27(4): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202004005.htm [3] 陈治军, 高怡文, 刘护创, 等. 银根—额济纳旗盆地哈日凹陷下白垩统烃源岩地球化学特征与油源对比[J]. 石油学报, 2018, 39(1): 69-81. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201801006.htmCHEN Zhijun, GAO Yiwen, LIU Huchuang, et al. Geochemical characteristics of Lower Cretaceous source rocks and oil-source correlation in Hari Sag, Yingen-Ejinaqi Basin[J]. Acta Petrolei Sinica, 2018, 39(1): 69-81. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201801006.htm [4] LI Wenhao, ZHANG Zhihuan, LI Youchuan. Some aspects of excellent marine source rock formation: implications on enrichment regularity of organic matter in continental margin basins[J]. Chinese Journal of Geochemistry, 2015, 34(1): 47-54. doi: 10.1007/s11631-014-0018-2 [5] 刘护创, 王文慧, 陈治军, 等. 银额盆地哈日凹陷白垩系云质泥岩气藏特征与成藏条件[J]. 岩性油气藏, 2019, 31(2): 24-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201902004.htmLIU Huchuang, WANG Wenhui, CHEN Zhijun, et al. Characteristics and accumulation conditions of Cretaceous dolomitic mudstone gas reservoir in Hari Sag, Yin'e Basin[J]. Lithologic Reservoirs, 2019, 31(2): 24-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201902004.htm [6] HOU Yunchao, WANG Hongyu, FAN Tailiang, et al. Rift-related sedimentary evolution and its response to tectonics and climate changes: a case study of the Guaizihu Sag, Yingen-Ejinaqi Basin, China[J]. Journal of Asian Earth Sciences, 2020, 195: 104370. doi: 10.1016/j.jseaes.2020.104370 [7] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 18602-2012, 岩石热解分析[S]. 北京: 中国标准出版社, 2013.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 18602-2012, Rock pyrolysis analysis[S]. Beijing: Standards Press of China, 2013. [8] 中国石油天然气总公司. SY/T 5735-1995, 陆相烃源岩地球化学评价方法[S]. 北京: 石油工业出版社, 1996.China National Petroleum Company. SY/T 5735-1995, Geochemical evaluation standard of terrestrial hydrocarbon source rock[S]. Beijing: Petroleum Industry Press, 1996. [9] 卢双舫, 张敏. 油气地球化学[M]. 北京: 石油工业出版社, 2018.LU Shuangfang, ZHANG Min. Oil and gas geochemical[M]. Beijing: Petroleum Industry Press, 2018. [10] LAI Hongfei, LI Meijun, LIU Jiguo, et al. Source rock assessment within a sequence stratigraphic framework of the Yogou Formation in the Termit Basin, Niger[J]. Geological Journal, 2019, 55(4): 2473-2494. [11] 张振苓, 邬立言, 舒念祖. 烃源岩热解分析参数Tmax异常的原因[J]. 石油勘探与开发, 2006, 33(1): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200705011.htmZHANG Zhenling, WU Liyan, SHU Nianzu. Cause analysis of abnormal Tmax values on Rock-Eval pyrolysis[J]. Petroleum Exploration and Development, 2006, 33(1): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200705011.htm [12] 陈治军, 王志伟, 张少清, 等. 二连盆地宝勒根陶海凹陷烃源岩生物标志化合物特征与油源对比[J]. 沉积学报, 2020, 38(2): 451-462. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202002019.htmCHEN Zhijun, WANG Zhiwei, ZHANG Shaoqing, et al. Biomarker characteristics of source rocks and oil source correlation in Baolegentaohai Sag, Erlian Basin[J]. Acta Sedimentologica Sinica, 2020, 38(2): 451-462. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202002019.htm [13] 刘刚, 周东升. 微量元素分析在判别沉积环境中的应用: 以江汉盆地潜江组为例[J]. 石油实验地质, 2007, 29(3): 307-310. doi: 10.11781/sysydz200703307LIU Gang, ZHOU Dongsheng. Application of microelements analysis in identifying sedimentary environment: taking Qianjiang Formation in the Jianghan Basin as an example[J]. Petroleum Geology & Experiment, 2007, 29(3): 307-310. doi: 10.11781/sysydz200703307 [14] 徐波, 胡碧瑶, 顾智鹏, 等. 西湖凹陷平湖斜坡带平湖组微量元素和稀土元素地球化学特征及其地质意义[J]. 西安石油大学学报(自然科学版), 2021, 36(2): 28-37. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY202102004.htmXU Bo, HU Biyao, GU Zhipeng, et al. Geochemical characteristics of trace elements and rare earth elements of Pinghu Formation in Pinghu Slope Belt of Xihu Sag and their geological significance[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2021, 36(2): 28-37. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY202102004.htm [15] PETERS K E, MOLDOWAN J M. The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments[M]. Englewood Cliffs: Prentice Hall, 1993: 109-126. [16] 付勇, 周文喜, 王华建, 等. 黔北下寒武统黑色岩系的沉积环境与地球化学响应[J]. 地质学报, 2021, 95(2): 536-548. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202102017.htmFU Yong, ZHOU Wenxi, WANG Huajian, et al. The relationship between environment and geochemical characteristics of black rock series of Lower Cambrian in northern Guizhou[J]. Acta Geologica Sinica, 2021, 95(2): 536-548. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202102017.htm [17] 李红敬, 解习农, 林正良, 等. 四川盆地广元地区大隆组有机质富集规律[J]. 地质科技情报, 2009, 28(2): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200902017.htmLI Hongjing, XIE Xinong, LIN Zhengliang, et al. Organic matter enrichment of Dalong Formation in Guangyuan area of the Sichuan Basin[J]. Geological Science and Technology Information, 2009, 28(2): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200902017.htm [18] 朱光有, 金强, 王锐. 有效烃源岩的识别方法[J]. 石油大学学报(自然科学版), 2003, 27(2): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200302002.htmZHU Guangyou, JIN Qiang, WANG Rui. Identification methods for efficient source rocks[J]. Journal of the University of Petroleum, China, 2003, 27(2): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200302002.htm [19] 庞雄奇. 排烃门限控油气理论与应用[M]. 北京: 石油工业出版社, 1995.PANG Xiongqi. Theory and application of hydrocarbon controlled by expulsion threshold[M]. Beijing: Petroleum Industry Press, 1995. [20] PANG Bo, CHEN Junqing, PANG Xiongqi, et al. Possible new method to discriminate effective source rocks in petroliferous basins: a case study in the Tazhong area, Tarim Basin[J]. Energy Exploration & Exploitation, 2020, 38(2): 417-433. [21] SI Wei, HOU Dujie, WU Piao, et al. Geochemical characteristics of Lower Cretaceous lacustrine organic matter in the southern sag of the Wuliyasitai Depression, Erlian Basin, China[J]. Marine and Petroleum Geology, 2020, 118: 104404. [22] 涂飞飞. 伊通盆地鹿乡断陷油气资源评价[D]. 大庆: 东北石油大学, 2016.TU Feifei. Oil and gas resource evaluation of Luxiang Fault Depression. Yitong Basin[D]. Daqing: Northeast Petroleum University, 2016. [23] 宋芝祥. 油气资源评价方法的选择[J]. 沉积学报, 1987, 5(1): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198701011.htmSONG Zhixiang. The selection of evaluation modes of oil and gas resources[J]. Acta Sedimentologica Sinica, 1987, 5(1): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198701011.htm