Constraints on carbonate diagenetic fluid properties by microzone in situ analysis of carbon and oxygen isotopes: a case study of Cambrian-Ordovician, Tarim Basin
-
摘要: 随着分析测试水平的提高,微区原位地球化学分析作为揭示复杂沉积—成岩过程的重要技术手段,越来越受到广泛重视。通过微区原位碳氧同位素分析,结合常规分样方法获取的碳氧同位素数据,对比讨论了同生期—埋藏期海水胶结作用、表生期大气淡水的溶蚀—充填作用与多阶段白云石化流体交代—胶结充填作用。结果显示,微区原位取样碳氧同位素分析有利于揭示胶结物形成过程的多期、多阶段的流体性质演化。常规分样获取的此类胶结物碳氧同位素值可能是多期次产物的混合值。对于相对单一的产物,如碳酸盐岩基质组分、大气淡水成因方解石等,常规分样进行碳氧同位素分析基本可以满足研究需要。微区原位取样碳氧同位素分析提供了一种相对“低成本、高精度”的分析手段,对精确示踪碳酸盐岩成岩演化过程具有重要意义。Abstract: As an important technological measure to uncover complex sedimentary-diagenetic process, microzone in situ geochemical analysis has drawn more and more attention along with improving analytical and test levels. According to the analysis of microzone in situ carbon and oxygen isotopes in combination with the data about carbon and oxygen isotopes acquired by conventional sample splitting methods, seawater cementation in syngenetic-burial stages, dissolution-infill by meteoric water in hypergenetic stage, and dolomitization fluid alternation-cementation infill in multiple stages were compared and discussed. The results demonstrated that the analysis of carbon and oxygen isotopes by microzone in situ sampling was favorable for revealing multi-stage and multi-period fluid property evolution in the process of cement formation. Carbon and oxygen isotopes of this cement type acquired by conventional sample splitting analysis might be mix values of multi-stage products. With respect to relatively single product (i.e. matrix components in carbonate rocks and calcite with meteoric water genesis), the analysis of carbon and oxygen isotopes by conventional sample splitting could basically meet study requirements. Microzone in situ sampling analysis on carbon and oxygen isotopes could provide a relatively "low cost and high accuracy" analytical measures, which has important meanings for precisely tracing diagenetic evolution of carbonate rocks.
-
Key words:
- carbon and oxygen isotopes /
- seawater cementation /
- meteoric water /
- dolomitization /
- carbonate rocks /
- Tarim Basin
-
表 1 塔里木盆地顺南地区奥陶系一间房组窗格孔灰岩不同类型方解石δ13C、δ18O分析结果
Table 1. Results of δ13C and δ18O of different calcite types in fenestrated limestone pores of Ordovician Yijianfang Formation, Shunnan area, Tarim Basin
样品深度/m 分析对象 δ13CVPDB/‰ δ18OVPDB/‰ 取样方法 6 669.10 灰岩基质(MC) 0.40 -7.40 常规分样 6 669.20 灰岩基质(MC) 0.40 -7.70 常规分样 灰岩基质(MC) 0.40 -7.60 常规分样 早期纤柱状方解石胶结物(CC1) 0.68 -5.85 原位微区 晚期粒状方解石胶结物(CC2) 0.44 -11.60 原位微区 6 669.80 灰岩基质(MC) 0.40 -7.70 常规分样 方解石胶结物(CC) 0.50 -6.50 常规分样 方解石胶结物(CC) 0.70 -6.40 常规分样 6 670.00 早期纤柱状方解石胶结物(CC1) 0.84 -4.31 原位微区 6 672.30 灰岩基质(MC) 0.70 -7.50 常规分样 灰岩基质(MC) 0.30 -7.50 常规分样 6 672.67 早期纤柱状方解石胶结物(CC1) 1.11 -4.28 原位微区 6 672.80 灰岩基质(MC) 0.40 -7.50 常规分样 6 673.40 灰岩基质(MC) 0.30 -7.70 常规分样 灰岩基质(MC) 0.30 -7.60 常规分样 6 673.75 晚期粒状方解石胶结物(CC2) 0.55 -9.91 原位微区 6 674.10 灰岩基质(MC) 0.30 -7.60 常规分样 表 2 塔里木盆地玉北地区奥陶系鹰山组灰岩不同产状方解石碳氧同位素分析结果
Table 2. Results of carbon and oxygen isotopes of different calcite occurrences in Ordovician Yingshan Formation limestone in Yubei area, Tarim Basin
样品深度/m 分析对象 δ13CVPDB/‰ δ18OVPDB/‰ 取样方法 6 918.35 灰岩基质(LM) -1.00 -7.30 常规分样 孔洞方解石(CC) -1.90 -11.90 常规分样 泥晶基质(M-mm) -0.75 -6.47 原位微区 孔洞方解石(C-mm) -2.19 -10.11 原位微区 6 918.64 泥晶基质(M-mm) -0.75 -6.54 原位微区 透明方解石(C-mm) -1.53 -12.22 原位微区 6 919.22 灰岩基质(LM) -1.40 -7.10 常规分样 孔洞方解石(CC) -1.70 -10.70 常规分样 6 920.00 灰岩基质(LM) -0.80 -6.70 常规分样 孔洞方解石(CC) -1.30 -8.30 常规分样 6 921.05 灰岩基质(LM) -1.40 -7.30 常规分样 孔洞方解石(CC) -2.00 -11.80 常规分样 6 921.05 泥晶基质(M-mm) -1.08 -6.47 原位微区 孔洞方解石(C-mm) -2.36 -10.48 原位微区 6 921.28 灰岩基质(LM) -1.20 -7.20 常规分样 孔洞方解石(CC) -1.70 -10.40 常规分样 6 921.63 灰岩基质(LM) -1.10 -7.80 常规分样 6 964.05 灰岩基质(LM) -1.30 -7.70 常规分样 6 967.53 灰岩基质(LM) -1.40 -7.50 常规分样 6 969.19 灰岩基质(LM) -1.50 -7.90 常规分样 孔洞方解石(CC) -2.40 -12.20 常规分样 泥晶基质(M-mm) -0.90 -6.91 原位微区 孔洞方解石(C-mm) -1.86 -13.25 原位微区 孔洞方解石(C-mm) -2.17 -10.72 原位微区 6 969.64 灰岩基质(LM) -0.90 -7.40 常规分样 孔洞方解石(CC) -2.10 -11.40 常规分样 泥晶基质(M-mm) -0.57 -6.93 原位微区 表 3 塔里木盆地塔深1井中寒武统阿瓦塔格组不同类型白云石碳氧同位素分析结果
Table 3. Results of carbon and oxygen isotopes of different dolomite types in Awatage Formation in well Tashen1, Tarim Basin
样品深度/m 分析对象 δ13CVPDB/‰ δ18OVPDB/‰ 取样方法 7 873.93 基质,粉晶—细晶白云石(MMD) 0.98 -3.89 原位微区 0.83 -4.22 原位微区 基质,粉晶—细晶白云岩(MD) 1.20 -4.70 常规分样 孔洞白云石胶结物(CD) 0.70 -5.50 常规分样 7 875.70 孔洞白云石胶结物(CD) 0.80 -7.70 常规分样 7 875.79 基质,细晶白云石(MMD) 0.43 -6.74 原位微区 0.53 -5.03 原位微区 孔洞充填的晚期白云石胶结物(MCD2) -1.10 -5.66 原位微区 -0.19 -5.01 原位微区 7 875.86 基质,粉晶白云岩(MD) 0.40 -6.30 常规分样 孔洞白云石胶结物(CD) -0.60 -6.20 常规分样 8 405.30 基质,粉晶白云岩(MD) 0.90 -4.50 常规分样 8 405.52 粉晶云岩孔洞鞍状白云石胶结物(SD)[41] -0.60 -13.00 常规分样 8 406.50 基质,粉晶白云岩(MD) 0.40 -5.60 常规分样 孔洞白云石胶结物(CD) 0.50 -6.90 常规分样 8 406.60 基质,粉晶白云岩(MD) 0.60 -5.10 常规分样 孔洞白云石胶结物(CD) -0.50 -10.10 常规分样 8 406.95 基质,泥晶—粉晶白云石(MMD) 1.15 -4.17 原位微区 1.37 -3.90 原位微区 1.10 -4.44 原位微区 1.06 -4.63 原位微区 1.17 -4.35 原位微区 孔洞边缘早期白云石胶结物(MCD1) 1.13 -4.16 原位微区 1.18 -4.00 原位微区 0.95 -4.62 原位微区 0.39 -6.38 原位微区 0.95 -4.62 原位微区 0.87 -4.64 原位微区 孔洞充填的晚期白云石胶结物(MCD2) -0.40 -8.54 原位微区 -0.57 -6.90 原位微区 -1.15 -8.23 原位微区 -1.10 -7.90 原位微区 -0.34 -7.08 原位微区 -0.32 -6.81 原位微区 基质,细晶白云岩(MD) 1.20 -4.90 常规分样 孔洞白云石胶结物(CD) 0.80 -5.70 常规分样 8 407.50 裂缝—孔洞鞍形白云石胶结物(SD) -2.10 -13.00 常规分样 粉晶白云岩孔洞鞍状白云石胶结物(SD)[41] -0.90 -12.50 常规分样 8 407.55 粉晶白云岩孔洞鞍状白云石胶结物(SD)[41] -0.80 -11.60 常规分样 8 407.90 基质,泥粉晶白云石(MMD) 0.52 -5.44 原位微区 0.72 -4.81 原位微区 孔洞充填的晚期白云石胶结物(MCD2) -1.11 -6.11 原位微区 8 408.50 基质,细—中晶白云岩(MD) 0.50 -6.10 常规分样 基质,细晶云岩(MD) 0.70 -5.00 常规分样 孔洞白云石胶结物(CD) 0.70 -10.90 常规分样 -
[1] DERRY L A, KAUFMAN A J, JACOBSEN S B. Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes[J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1317-1329. doi: 10.1016/0016-7037(92)90064-P [2] MCDERMOTT F. Palaeo-climate reconstruction from stable isotope variations in speleothems: a review[J]. Quaternary Science Reviews, 2004, 23(7/8): 901-918. http://scripts.cac.psu.edu/dept/liberalarts/sites/kennett/pdf/McDermott_2004_QSR_speleothem-review.pdf [3] 董庆民, 胡忠贵, 陈世悦, 等. 川东北地区长兴组—飞仙关组碳酸盐岩同位素地球化学响应及其地质意义[J]. 石油与天然气地质, 2021, 42(6): 1307-1320. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106006.htmDONG Qingmin, HU Zhonggui, CHEN Shiyue, et al. Isotope geoche-mical responses and their geological significance of Changxing-Feixianguan formation carbonates, northeastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(6): 1307-1320. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106006.htm [4] VEIZER J, ALA D, AZMY K, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161(1/3): 59-88. [5] JACOBSEN S B, KAUFMAN A J. The Sr, C and O isotopic evolution of Neoproterozoic seawater[J]. Chemical Geology, 1999, 161(1/3): 37-57. http://eurekamag.com/pdf.php?pdf=020276055 [6] 刘超, 马骄, 萨如力草克提·沙拉克, 等. 沙垒田地区奥陶系古岩溶储层热液流体改造的地球化学证据[J]. 断块油气田, 2021, 28(5): 620-624. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202105009.htmLIU Chao, MA Jiao, SARULICAPKETI Shalake, et al. Geochemical evidences of hydrothermal fluid alterations of Ordovician paleokarst reservoirs in Shaleitian area[J]. Fault-Block Oil and Gas Field, 2021, 28(5): 620-624. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202105009.htm [7] SWART P K. The geochemistry of carbonate diagenesis: the past, present and future[J]. Sedimentology, 2015, 62(5): 1233-1304. doi: 10.1111/sed.12205 [8] QING Hairuo, MOUNTJOY E. Large-scale fluid flow in the Middle Devonian Presqu'ile barrier, Western Canada Sedimentary Basin[J]. Geology, 1992, 20(10): 903-906. doi: 10.1130/0091-7613(1992)020<0903:LSFFIT>2.3.CO;2 [9] CHEN Daizhao, QING Hairuo, YANG Chao. Multistage hydrothermal dolomites in the Middle Devonian (Givetian) carbonates from the Guilin area, South China[J]. Sedimentology, 2004, 51(5): 1029-1051. doi: 10.1111/j.1365-3091.2004.00659.x [10] LI Huili, YOU Donghua, HAN Jun, et al. The origin of fluid in calcite veins and its implications for hydrocarbon accumulation in the Shunnan-Gucheng area of the Tarim Basin, China[J]. Journal of Natural Gas Geoscience, 2020, 5(6): 341-353. doi: 10.1016/j.jnggs.2020.11.001 [11] 曹自成, 尤东华, 漆立新, 等. 塔里木盆地塔深1井超深层白云岩储层成因新认识: 来自原位碳氧同位素分析的证据[J]. 天然气地球科学, 2020, 31(7): 915-922. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202007003.htmCAO Zicheng, YOU Donghua, QI Lixin, et al. New insights of the genesis of ultra-deep dolomite reservoirs in well TS1, Tarim Basin: evidence from in situ carbon and oxygen isotope analysis[J]. Natural Gas Geoscience, 2020, 31(7): 915-922. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202007003.htm [12] 李平平, 王淳, 邹华耀, 等. 团簇同位素在白云岩化流体恢复中的应用与局限性[J]. 石油与天然气地质, 2021, 42(3): 738-746. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202103019.htmLI Pingping, WANG Chun, ZOU Huayao, et al. Application of clumped isotopes to restoration of dolomitizing fluids and its limitations[J]. Oil & Gas Geology, 2021, 42(3): 738-746. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202103019.htm [13] VERSCHURE R H. A microscope-mounted drill to isolate microgram quantities of mineral material from thin and polished section[J]. Mineralogical Magazine, 1978, 42(324): 499-503. doi: 10.1180/minmag.1978.042.324.13 [14] 谢小敏, 胡文瑄, 王小林, 等. 新疆柯坪地区寒武纪—奥陶纪碳酸盐岩沉积旋回的碳氧同位素研究[J]. 地球化学, 2009, 38(1): 75-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200901009.htmXIE Xiaomin, HU Wenxuan, WANG Xiaolin, et al. Sedimentary sequences in Keping area, Xinjiang: constraints from carbon and oxygen isotope compositions of Cambrian to Ordovician carbonate rocks[J]. Geochimica, 2009, 38(1): 75-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200901009.htm [15] PREZBINDOWSKI D. Microsampling technique for stable isotopic analyses of carbonates[J]. Journal of Sedimentary Research, 1980, 50(2): 643-644. doi: 10.1306/212F7A9A-2B24-11D7-8648000102C1865D [16] DONG Shaofeng, CHEN Daizhao, QING Hairuo, et al. In situ stable isotopic constraints on dolomitizing fluids for the hydrothermally-originated saddle dolomites at Keping, Tarim Basin[J]. Chinese Science Bulletin, 2013, 58(23): 2877-2882. doi: 10.1007/s11434-013-5801-7 [17] SMALLEY P C, STIJFHOORN D E, RÅHEIM A, et al. The laser microprobe and its application to the study of C and O isotopes in calcite and aragonite[J]. Sedimentary Geology, 1989, 65(3/4): 211-221. http://www.geosc.psu.edu/Courses/Geosc518/4_Sample_Prep/Chapter_4/4_5_Oxygen/4_5_3_Silicates_and_Oxides/4_5_3_8_Laser_Microprobe/4_5_3_8_3_Laser_Vacuum_Lines/Papers/smalley%20et%20al%20%201989%20Nd%20laser%20carbonate.pdf [18] DICKSON J A D, SMALLEY P C, RÅHEIM A, et al. Intracrystalline carbon and oxygen isotope variations in calcite revealed by laser microsampling[J]. Geology, 1990, 18(9): 809-811. doi: 10.1130/0091-7613(1990)018<0809:ICAOIV>2.3.CO;2 [19] SMALLEY P C, MAILE C N, COLEMAN M L, et al. LASSIE (laser ablation sampler for stable isotope extraction) applied to carbonate minerals[J]. Chemical Geology: Isotope Geoscience Section, 1992, 101(1/2): 43-52. http://www.sciencedirect.com/science/article/pii/000925419290201F [20] 罗平, 苏立萍, 罗忠, 等. 激光显微取样技术在川东北飞仙关组鲕粒白云岩碳氧同位素特征研究中的应用[J]. 地球化学, 2006, 35(3): 325-330. doi: 10.3321/j.issn:0379-1726.2006.03.014LUO Ping, SU Liping, LUO Zhong, et al. Application of laser micro-sampling technique to analysis of C and O isotopes of oolitic dolomites in Feixianguan Formation, Northeast Sichuan[J]. Geochi-mica, 2006, 35(3): 325-330. doi: 10.3321/j.issn:0379-1726.2006.03.014 [21] 胡安平, 沈安江, 王永生, 等. 海相碳酸盐岩储层实验分析技术进展及应用[J]. 海相油气地质, 2020, 25(1): 1-11. doi: 10.3969/j.issn.1672-9854.2020.01.001HU Anping, SHEN Anjiang, WANG Yongsheng, et al. The progress and application of experimental analysis technology for marine carbonate reservoir[J]. Marine Origin Petroleum Geology, 2020, 25(1): 1-11. doi: 10.3969/j.issn.1672-9854.2020.01.001 [22] SPÖTL C, MATTEY D. Stable isotope microsampling of speleothems for palaeoenvironmental studies: a comparison of microdrill, micromill and laser ablation techniques[J]. Chemical Geology, 2006, 235(1/2): 48-58. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0009254106002919&originContentFamily=serial&_origin=article&_ts=1438138103&md5=c00145d89d8b4dcc092b3ff0b8a98166 [23] 吕焕泽, 邹妞妞, 蔡宁宁, 等. 玛湖凹陷北斜坡百口泉组碳酸盐胶结物形成机理及其地质意义[J]. 新疆石油地质, 2022, 43(5): 554-562. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202205007.htmLÜ Huanze, ZOU Niuniu, CAI Ningning, et al. Formation mechanism and geological significance of carbonate cements in Baikouquan formation on northern slope of Mahu Sag[J]. Xinjiang Petroleum Geology, 2022, 43(5): 554-562. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202205007.htm [24] 吴梅莲, 柴雄, 周碧辉, 等. 缝洞型碳酸盐岩储集层连通性刻画及应用[J]. 新疆石油地质, 2022, 43(2): 188-193. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202202009.htmWU Meilian, CHAI Xiong, ZHOU Bihui, et al. Connectivity characte-rization of fractured-vuggy carbonate reservoirs and application[J]. Xinjiang Petroleum Geology, 2022, 43(2): 188-193. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202202009.htm [25] 蔡习尧, 钱一雄, 陈强路, 等. 塔里木盆地古隆1井奥陶系恰尔巴克组与一间房组的发现及意义[J]. 石油实验地质, 2011, 33(4): 348-352. doi: 10.3969/j.issn.1001-6112.2011.04.005CAI Xiyao, QIAN Yixiong, CHEN Qianglu, et al. Discovery and significance of Qrebake and Yijianfang fomations of Ordovician in well GL1, Tarim Basin[J]. Petroleum Geology & Experiment, 2011, 33(4): 348-352. doi: 10.3969/j.issn.1001-6112.2011.04.005 [26] 张智礼, 李慧莉, 熊平, 等. 塔中北坡中奥陶统一间房组碳同位素地层学研究[J]. 中国地质, 2016, 43(2): 638-649. doi: 10.3969/j.issn.1000-3657.2016.02.023ZHANG Zhili, LI Huili, XIONG Ping, et al. A study of carbon isotope stratigraphy of the middle Ordovician Yijianfang Formation on the north slope of Tazhong area[J]. Geology in China, 2016, 43(2): 638-649. doi: 10.3969/j.issn.1000-3657.2016.02.023 [27] 张智礼, 李慧莉, 谭广辉, 等. 塔里木中央隆起区奥陶纪碳同位素特征及其地层意义[J]. 地层学杂志, 2014, 38(2): 181-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201402007.htmZHANG Zhili, LI Huili, TAN Guanghui, et al. Carbon isotope chemostratigraphy of the Ordovician system in central uplift of the Tarim Basin[J]. Journal of Stratigraphy, 2014, 38(2): 181-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201402007.htm [28] 尤东华, 韩俊, 胡文瑄, 等. 超深层灰岩孔隙—微孔隙特征与成因: 以塔里木盆地顺南7井和顺托1井一间房组灰岩为例[J]. 石油与天然气地质, 2017, 38(4): 693-702. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201704006.htmYOU Donghua, HAN Jun, HU Wenxuan, et al. Characteristics and genesis of pores and micro-pores in ultra-deep limestones: a case study of Yijianfang Formation limestones from Shunnan-7 and Shuntuo-1 wells in Tarim Basin[J]. Oil & Gas Geology, 2017, 38(4): 693-702. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201704006.htm [29] TROTTER J A, WILLIAMS I S, BARNES C R, et al. Did cooling oceans trigger Ordovician biodiversification?Evidence from conodont thermometry[J]. Science, 2008, 321(5888): 550-554. http://www.onacademic.com/detail/journal_1000035586484810_49a6.html [30] KALJO D, MARTMA T, SAADRE T. Post-Hunnebergian Ordovician carbon isotope trend in Baltoscandia, its environmental implications and some similarities with that of Nevada[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 245(1/2): 138-155. http://www.sciencedirect.com/science/article/pii/S0031018206003439 [31] 孟万斌, 肖春晖, 冯明石, 等. 碳酸盐岩成岩作用及其对储层的影响: 以塔中顺南地区一间房组为例[J]. 岩性油气藏, 2016, 28(5): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201605003.htmMENG Wanbin, XIAO Chunhui, FENG Mingshi, et al. Carbonate diagenesis and its influence on reservoir: a case study from Yijianfang Formation in Shunnan area, central Tarim Basin[J]. Lithologic Reservoirs, 2016, 28(5): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201605003.htm [32] 傅恒, 韩建辉, 孟万斌, 等. 塔里木盆地塔中北坡奥陶系碳酸盐岩岩溶储层的形成机理[J]. 天然气工业, 2017, 37(3): 25-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201703009.htmFU Heng, HAN Jianhui, MENG Wanbin, et al. Forming mechanism of the Ordovician karst carbonate reservoirs on the northern slope of central Tarim Basin[J]. Natural Gas Industry, 2017, 37(3): 25-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201703009.htm [33] 尤东华, 曹自成, 徐明军, 等. 塔里木盆地奥陶系鹰山组多类型白云岩储层成因机制[J]. 石油与天然气地质, 2020, 41(1): 92-101. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001010.htmYOU Donghua, CAO Zicheng, XU Mingjun, et al. Genetic mecha-nism of multi-type dolomite reservoirs in Ordovician Yingshan Formation, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(1): 92-101. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001010.htm [34] 钱一雄, 沙旭光, 李慧莉, 等. 塔里木盆地塔中西部加里东中、晚期构造—层序结构与奥陶系碳酸盐岩储集体分布[J]. 地学前缘, 2013, 20(1): 260-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201301023.htmQIAN Yixiong, SHA Xuguang, LI Huili, et al. An approach to Caledonian unconformities and sequence stratigraphic patterns and distribution of reservoirs of Ordovician carbonate in the western Tazhong area, Tarim Basin[J]. Earth Science Frontiers, 2013, 20(1): 260-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201301023.htm [35] 乔桂林, 钱一雄, 曹自成, 等. 塔里木盆地玉北地区奥陶系鹰山组储层特征及岩溶模式[J]. 石油实验地质, 2014, 36(4): 416-421. doi: 10.11781/sysydz201404416QIAO Guilin, QIAN Yixiong, CAO Zicheng, et al. Reservoir characteristics and karst model of Ordovician Yingshan Formation in Yubei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2014, 36(4): 416-421. doi: 10.11781/sysydz201404416 [36] 李映涛, 袁晓宇, 叶宁, 等. 塔里木盆地玉北地区鹰山组储层特征及主控因素[J]. 海相油气地质, 2014, 19(4): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201404003.htmLI Yingtao, YUAN Xiaoyu, YE Ning, et al. Reservoir characterization and controlling factors of Lower-Middle Ordovician Yingshan reservoir in Yubei area, Tarim Basin[J]. Marine Origin Petroleum Geology, 2014, 19(4): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201404003.htm [37] 蔡习尧, 赵丽娜, 李慧莉, 等. 麦盖提斜坡上奥陶统良里塔格组的确认及意义[J]. 新疆石油地质, 2015, 36(3): 351-356. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201503023.htmCAI Xiyao, ZHAO Lina, LI Huili, et al. Confirmation and significance of Lianglitage Formation of Upper Ordovician in Maigaiti Slope, Tarim Basin[J]. Xinjiang Petroleum Geology, 2015, 36(3): 351-356. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201503023.htm [38] 孟庆强, 朱东亚, 胡文瑄, 等. 热力学和动力学双重控制下的大气降水溶蚀—充填机制[J]. 中国科学: 地球科学, 2013, 43(11): 1797-1806. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201311009.htmMENG Qingqiang, ZHU Dongya, HU Wenxuan, et al. Dissolution-filling mechanism of atmospheric precipitation controlled by both thermodynamics and kinetics[J]. Science China Earth Sciences, 2013, 56(12): 2150-2159. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201311009.htm [39] 云露, 翟晓先. 塔里木盆地塔深1井寒武系储层与成藏特征探讨[J]. 石油与天然气地质, 2008, 29(6): 726-732. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200806006.htmYUN Lu, ZHAI Xiaoxian. Discussion on characteristics of the Cambrian reservoirs and hydrocarbon accumulation in well Tashen-1, Tarim Basin[J]. Oil & Gas Geology, 2008, 29(6): 726-732. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200806006.htm [40] 孟祥豪, 张哨楠, 蔺军, 等. 塔深1井寒武系白云岩储层同位素流体地球化学示踪[J]. 矿物岩石, 2009, 29(4): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200904011.htmMENG Xianghao, ZHANG Shaonan, LIN Jun, et al. Geochemical tracing of isotopic fluid of the Cambrian dolomite reservoir in well Tashen 1[J]. Journal of Mineralogy and Petrology, 2009, 29(4): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200904011.htm [41] 蔺军, 周芳芳, 袁国芬. 塔河地区寒武系储层深埋藏白云石化特征[J]. 石油与天然气地质, 2010, 31(1): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201001006.htmLIN Jun, ZHOU Fangfang, YUAN Guofen. Features of deep-burial dolomitization of the Cambrian reservoirs in Tahe region[J]. Oil & Gas Geology, 2010, 31(1): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201001006.htm [42] ZHU Dongya, MENG Qingqiang, JIN Zhijun, et al. Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim Basin, northwestern China[J]. Marine and Petroleum Geology, 2015, 59: 232-244. http://www.onacademic.com/detail/journal_1000036618427810_d9c5.html [43] EHRENBERG S N, BJØRLYKKE K. Comments regarding hydrothermal dolomitization and porosity development in the paper "Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim Basin, northwestern China" by Zhu et al. (2015)[J]. Marine and Petroleum Geology, 2016, 76: 480-481. http://smartsearch.nstl.gov.cn/paper_detail.html?id=cf3dcad339401e35486cdd2b1922ae92 [44] 尤东华, 王亮, 胡文瑄, 等. 从成岩—蚀变特征探讨塔深1井白云岩储层成因[J]. 岩石矿物学杂志, 2018, 37(1): 34-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201801004.htmYOU Donghua, WANG Liang, HU Wenxuan, et al. Formation of deep dolomite reservoir of well TS1: insights from diagenesis and alteration investigations[J]. Acta Petrologica et Mineralogica, 2018, 37(1): 34-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201801004.htm [45] WANG Lichao, HU Wenxuan, WANG Xiaolin, et al. Seawater normalized REE patterns of dolomites in Geshan and Panlongdong sections, China: implications for tracing dolomitization and diagenetic fluids[J]. Marine and Petroleum Geology, 2014, 56: 63-73. http://www.sciencedirect.com/science/article/pii/S0264817214000476 [46] ZHU Maoyan, BABCOCK L E, PENG Shanchi. Advances in Cambrian Stratigraphy and paleontology: integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction[J]. Palaeoworld, 2006, 15(3/4): 217-222. http://www.sciencedirect.com/science/article/pii/S1871174X06000485 [47] GOMEZ F J, OGLE N, ASTINI R A, et al. Paleoenvironmental and carbon-oxygen isotope record of Middle Cambrian carbonates (La Laja Formation) in the argentine Precordillera[J]. Journal of Sedimentary Research, 2007, 77(10): 826-842. http://www.onacademic.com/detail/journal_1000034834997510_565a.html [48] 焦存礼, 何治亮, 邢秀娟, 等. 塔里木盆地构造热液白云岩及其储层意义[J]. 岩石学报, 2011, 27(1): 277-284. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101020.htmJIAO Cunli, HE Zhiliang, XING Xiujuan, et al. Tectonic hydrothermal dolomite and its significance of reservoirs in Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(1): 277-284. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101020.htm