Evolution of environmental oxidation and reduction of sea water in Three Gorges area in Early Cambrian: evidence from decoupled carbon isotopes in Luojiacun section
-
摘要: 新元古代晚期到寒武纪早期是地球历史上生命演化和环境变化的重要转折期,此期间深海被认为广泛缺氧,而表层海水存在重大氧化还原环境的波动。选取宜昌三峡地区罗家村剖面下寒武统岩家河组、水井沱组为研究对象,基于生物地层学和无机碳同位素地层学对比,岩家河组、水井沱组分别对应纽芬兰统幸运阶至第二阶和第二统第三阶。根据此时间框架,系统研究了无机碳同位素和有机碳同位素解耦对水体氧化还原环境转变的响应。研究显示,海侵过程中底部缺氧水体的上升为初级生产力提供了充足的营养元素和生物必需微量元素,净生产力的提高导致了水体氧化还原环境的变化。光合作用产生的氧气使得表层海水处于暂时充氧的环境,这部分溶解氧随着溶解有机碳(DOC)储库的氧化而逐步消耗,海洋缺氧面积逐渐增加,有利于有机质的保存。底水上涌将深部缺氧水体中的DOC输入到表层水体,此氧化环境下DOC的持续氧化,导致形成的自生碳酸盐岩贫13C,而早寒武世海水中容量可观的DOC库缓冲了δ13Corg的变化,最终表现为早寒武世第二期—第三期过渡时期的碳同位素解耦现象。Abstract: The Late Neoproterozoic to Early Cambrian is a remarkable time-interval that witnessed significant biolo-gical and environmental evolutions, during which, the deep ocean was extensively anoxic, whereas the surface ocean was characterized by considerable fluctuations in redox conditions. The Lower Cambrian Yanjiahe and Shuijingtuo formations in the Luojiacun section from the Three Gorges area situated in Yichang city of central China were studied in this paper. According to biostratigraphic and carbonate carbon isotope stratigraphic correlation, the Yanjiahe Formation and Shuijingtuo Formation were assigned to the Cambrian Terreneuvian Stage 1-2 and Series 2 Stage 3, respectively. In view of this time-frame, the response of inorganic and organic carbon isotopes decoupling to water redox environment transition was systematically studied. The rise of anoxic bottom water during transgression provided sufficient nutrients and essential trace elements for primary productivity in the surface ocean. The increase of net productivity led to oxygen consumption increase and the changes of redox environment in the water column. Photosynthetic oxygen temporarily oxygenated the surface seawater, and dissolved oxygen was gradually consumed by the oxidation of DOC reservoirs, resulting in gradual expansion of oceanic anoxia, which was conducive for the preservation of organic matters. The oxidation of DOC in the surface water accounted for the formation of authigenic carbonates that were 13C-depleted, while the large oceanic DOC reservoir in the Early Cambrian buffered the change in δ13Corg, which eventually manifested as decoupled carbon isotope during the transition time of Cambrian Stage 2-3.
-
图 6 三峡地区罗家村剖面下寒武统MoEF-UEF协变(a)和Mo-TOC变化模式(b)[46]
Figure 6. MoEF-UEF (a) and Mo-TOC (b) co-variation patterns of Lower Cambrian, Luojiacun section, Three Gorges area
-
[1] MEERT J G, LIEBERMAN B S. The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran-Cambrian radiation[J]. Gondwana Research, 2008, 14(1/2): 5-21. http://www.gondwanaresearch.com/explode.pdf [2] GUO Qingjun, STRAUSS H, LIU Congqiang, et al. Carbon isotopic evolution of the terminal Neoproterozoic and Early Cambrian: evidence from the Yangtze Platform, South China[J]. Palaeogeo-graphy, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 140-157. http://www.onacademic.com/detail/journal_1000035429447510_3a6a.html [3] KAUFMAN A J, JACOBSEN S B, KNOLL A H. The vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate[J]. Earth and Planetary Science Letters, 1993, 120(3/4): 409-430. http://www.onacademic.com/detail/journal_1000035302339610_2747.html [4] SHIELDS-ZHOU G, ZHU Maoyan. Biogeochemical changes across the Ediacaran-Cambrian transition in South China[J]. Precambrian Research, 2013, 225: 1-6. doi: 10.1016/j.precamres.2012.10.011 [5] ANBAR A D, KNOLL A H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge?[J]. Science, 2002, 297(5584): 1137-1142. doi: 10.1126/science.1069651 [6] DAHL T W, CONNELLY J N, LI Da, et al. Atmosphere-ocean oxygen and productivity dynamics during early animal radiations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(39): 19352-19361. doi: 10.1073/pnas.1901178116 [7] KNOLL A H. End of the Proterozoic eon[J]. Scientific American, 1991, 265(4): 64-73. doi: 10.1038/scientificamerican1091-64 [8] MCFADDEN K A, HUANG Jing, CHU Xuelei, et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(9): 3197-3202. doi: 10.1073/pnas.0708336105 [9] FIKE D A, GROTZINGER J P, PRATT L M, et al. Oxidation of the ediacaran ocean[J]. Nature, 2006, 444(7120): 744-747. doi: 10.1038/nature05345 [10] CHEN Xi, LING Hongfei, VANCE D, et al. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals[J]. Nature Communications, 2015, 6(1): 7142. doi: 10.1038/ncomms8142 [11] OCH L M, SHIELDS-ZHOU G A, POULTON S W, et al. Redox changes in Early Cambrian black shales at Xiaotan section, Yunnan Province, South China[J]. Precambrian Research, 2013, 225: 166-189. doi: 10.1016/j.precamres.2011.10.005 [12] JIANG Ganqing, KAUFMAN A J, CHRISTIE-BLICK N, et al. Carbon isotope variability across the Ediacaran Yangtze platform in South China: implications for a large surface-to-deep ocean δ13C gradient[J]. Earth and Planetary Science Letters, 2007, 261(1/2): 303-320. http://www.geol.umd.edu/~kaufman/pdf/Jiang07_EPSL.pdf [13] LI Chao, LOVE G D, LYONS T W, et al. A stratified redox model for the ediacaran ocean[J]. Science, 2010, 328(5974): 80-83. doi: 10.1126/science.1182369 [14] LI Chao, CHENG Meng, ALGEO T J, et al. A theoretical prediction of chemical zonation in early oceans (>520 Ma)[J]. Science China Earth Sciences, 2015, 58(11): 1901-1909. doi: 10.1007/s11430-015-5190-7 [15] WEI Guangyi, PLANAVSKY N J, TARHAN L G, et al. Marine redox fluctuation as a potential trigger for the Cambrian explosion[J]. Geology, 2018, 46(7): 587-590. doi: 10.1130/G40150.1 [16] WOOD R, LIU A G, BOWYER F, et al. Integrated records of environmental change and evolution challenge the Cambrian Explosion[J]. Nature Ecology & Evolution, 2019, 3(4): 528-538. http://www.xueshufan.com/publication/2936698800 [17] 朱茂炎, 孙智新, 杨爱华, 等. 中国寒武纪岩石地层划分和对比[J]. 地层学杂志, 2021, 45(3): 222-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ202103002.htmZHU Maoyan, SUN Zhixin, YANG Aihua, et al. Lithostratigraphic subdivision and correlation of the Cambrian in China[J]. Journal of Stratigraphy, 2021, 45(3): 222-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ202103002.htm [18] STEINER M, ZHU Maoyan, ZHAO Yuanlong, et al. Lower Cambrian Burgess shale-type fossil associations of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 220(1/2): 129-152. http://www.researchgate.net/profile/Michael_Steiner2/publication/223949614_Lower_Cambrian_Burgess_Shale-type_fossil_associations_of_South_China/links/02bfe50d625bb243e5000000 [19] MALOOF A C, PORTER S M, MOORE J L, et al. The earliest Cambrian record of animals and ocean geochemical change[J]. GSA Bulletin, 2010, 122(11/12): 1731-1774. http://biogeochem.wustl.edu/pdfs/Maloof_Cambrian_Review_GSAB_2010.pdf [20] GUO Junfeng, LI Yong, LI Guoxiang. Small shelly fossils from the Early Cambrian Yanjiahe Formation, Yichang, Hubei, China[J]. Gondwana Research, 2014, 25(3): 999-1007. doi: 10.1016/j.gr.2013.03.007 [21] 朱茂炎, 杨爱华, 袁金良, 等. 中国寒武纪综合地层和时间框架[J]. 中国科学: 地球科学, 2019, 49(1): 26-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201901004.htmZHU Maoyan, YANG Aihua, YUAN Jinliang, et al. Cambrian integrative stratigraphy and timescale of China[J]. Science China Earth Sciences, 2019, 62(1): 25-60. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201901004.htm [22] RIPPERDAN R L. Global variations in carbon isotope composition during the latest Neoproterozoic and earliest Cambrian[J]. Annual Review of Earth and Planetary Sciences, 1994, 22(1): 385-417. doi: 10.1146/annurev.ea.22.050194.002125 [23] MACDONALD F A, SCHMITZ M D, CROWLEY J L, et al. Calibrating the cryogenian[J]. Science, 2010, 327(5970): 1241-1243. doi: 10.1126/science.1183325 [24] LI Da, LING Hongfei, SHIELDS-ZHOU G A, et al. Carbon and strontium isotope evolution of seawater across the Ediacaran-Cambrian transition: evidence from the Xiaotan section, NE Yunnan, South China[J]. Precambrian Research, 2013, 225: 128-147. doi: 10.1016/j.precamres.2012.01.002 [25] WANG Xinqiang, JIANG Ganqing, SHI Xiaoying, et al. Paired carbonate and organic carbon isotope variations of the Ediacaran Doushantuo Formation from an upper slope section at Siduping, South China[J]. Precambrian Research, 2016, 273: 53-66. doi: 10.1016/j.precamres.2015.12.010 [26] MALOOF A C, RAMEZANI J, BOWRING S A, et al. Constraints on Early Cambrian carbon cycling from the duration of the Nemakit-Daldynian-Tommotian boundary δ13C shift, Morocco[J]. Geology, 2010, 38(7): 623-623. doi: 10.1130/G30726.1 [27] JOHNSTON D T, MACDONALD F A, GILL B C, et al. Uncovering the Neoproterozoic carbon cycle[J]. Nature, 2012, 483(7389): 320-323. doi: 10.1038/nature10854 [28] CHEN Daizhao, QING Hairuo, LI Renwei. The Late Devonian Frasnian-Famennian (F/F) biotic crisis: insights from δ13Ccarb, δ13Corg and 87Sr/86Sr isotopic systematics[J]. Earth and Planetary Science Letters, 2005, 235(1/2): 151-166. [29] JARVIS I, TRABUCHO-ALEXANDRE J, GRÖCKE D R, et al. Intercontinental correlation of organic carbon and carbonate stable isotope records: evidence of climate and sea-level change during the Turonian (Cretaceous)[J]. The Depositional Record, 2015, 1(2): 53-90. doi: 10.1002/dep2.6 [30] HAYES J M, STRAUSS H, KAUFMAN A J. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma[J]. Chemical Geology, 1999, 161(1/3): 103-125. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=B88931B1F1DF5C504F88D4D416487119?doi=10.1.1.553.7248&rep=rep1&type=pdf [31] ZHAO Junhong, ZHOU Meifu, YAN Danping, et al. Reappraisal of the ages of Neoproterozoic strata in South China: no connection with the Grenvillian orogeny[J]. Geology, 2011, 39(4): 299-302. doi: 10.1130/G31701.1 [32] ZHU Maoyan, ZHANG Junming, YANG Aihua, et al. Sinian-Cambrian stratigraphic framework for shallow- to deep-water environments of the Yangtze Platform: an integrated approach[J]. Progress in Natural Science, 2003, 13(12): 951-960. doi: 10.1080/10020070312331344710 [33] ZHANG Lei, CHANG Shan, KHAN M Z, et al. Influence of palaeo-redox and diagenetic conditions on the spatial distribution of Cambrian biotas: a case study from the upper Shuijingtuo Formation (Cambrian Series 2, Stage 3), Three Gorges area of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 548: 109696. doi: 10.1016/j.palaeo.2020.109696 [34] ZHANG Lei, CHANG Shan, KHAN M Z, et al. The link between metazoan diversity and paleo-oxygenation in the Early Cambrian: an integrated palaeontological and geochemical record from the eastern Three Gorges region of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 495: 24-41. doi: 10.1016/j.palaeo.2017.12.007 [35] JIANG Ganqing, WANG Xinqiang, SHI Xiaoying, et al. The origin of decoupled carbonate and organic carbon isotope signatures in the Early Cambrian (ca. 542-520 Ma) Yangtze platform[J]. Earth and Planetary Science Letters, 2012, 317-318: 96-110. doi: 10.1016/j.epsl.2011.11.018 [36] LANDING E. Precambrian-Cambrian boundary global stratotype ratified and a new perspective of Cambrian time[J]. Geology, 1994, 22(2): 179-182. doi: 10.1130/0091-7613(1994)022<0179:PCBGSR>2.3.CO;2 [37] STEINER M, LI Guoxiang, QIAN Yi, et al. Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 67-99. http://www.onacademic.com/detail/journal_1000035428413710_70e3.html [38] CHANG Shan, ZHANG Lei, CLAUSEN S, et al. Source of silica and silicification of the lowermost Cambrian Yanjiahe Formation in the Three Gorges area, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 548: 109697. doi: 10.1016/j.palaeo.2020.109697 [39] LIU Kai, FENG Qinglai, SHEN Jun, et al. Increased productivity as a primary driver of marine anoxia in the Lower Cambrian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 491: 1-9. doi: 10.1016/j.palaeo.2017.11.007 [40] ISHIKAWA T, UENO Y, KOMIYA T, et al. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: prominent global-scale isotope excursions just before the Cambrian explosion[J]. Gondwana Research, 2008, 14(1/2): 193-208. http://www.sciencedirect.com/science/article/pii/S1342937X07001979 [41] STEINER M, YANG Ben, HOHL S, et al. Cambrian small skeletal fossil and carbon isotope records of the southern Huangling anticline, Hubei (China) and implications for chemostratigraphy of the Yangtze Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 554: 109817. doi: 10.1016/j.palaeo.2020.109817 [42] TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12-32. [43] KIMURA H, WATANABE Y. Oceanic anoxia at the Precambrian-Cambrian boundary[J]. Geology, 2001, 29(11): 995-998. doi: 10.1130/0091-7613(2001)029<0995:OAATPC>2.0.CO;2 [44] JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4): 111-129. http://www.sciencedirect.com/science/article/pii/000925419490085X [45] HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark shale member of the Dennis limestone, Wabaunsee County, Kansas, U.S.A. [J]. Chemical Geology, 1992, 99(1/3): 65-82. http://www.sciencedirect.com/science/article/pii/000925419290031Y [46] ALGEO T J, LYONS T W. Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography and Paleoclimatology, 2006, 21(1): PA1016. doi: 10.1029/2004PA001112/full [47] JIANG Ganqing, WANG Xinqiang, SHI Xiaoying, et al. Organic carbon isotope constraints on the dissolved organic carbon (DOC) reservoir at the Cryogenian-Ediacaran transition[J]. Earth and Planetary Science Letters, 2010, 299(1/2): 159-168. http://www.researchgate.net/profile/Shuhai_Xiao/publication/222647763_Organic_carbon_isotope_constraints_on_the_dissolved_organic_carbon_(DOC)_reservoir_at_the_CryogenianEdiacaran_transition/links/02e7e52938349eb07b000000 [48] BOYLE R A, DAHL T W, BJERRUM C J, et al. Bioturbation and directionality in Earth's carbon isotope record across the Neoproterozoic-Cambrian transition[J]. Geobiology, 2018, 16(3): 252-278. doi: 10.1111/gbi.12277 [49] DERRY L A. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly[J]. Earth and Planetary Science Letters, 2010, 294(1/2): 152-162. http://www.onacademic.com/detail/journal_1000035382765110_faf9.html [50] 高云佩. 埃迪卡拉纪海洋碳、磷、硫循环: 来自华南的证据[D]. 合肥: 中国科学技术大学, 2019.GAO Yunpei. Ediacaran marine carbon, phosphorus, and sulfur cycle: evidence from South China[D]. Hefei: University of Science and Technology of China, 2019. [51] CUI Huan, KAUFMAN A J, XIAO Shuhai, et al. Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event?Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China[J]. Chemical Geology, 2017, 450: 59-80. http://www.sciencedirect.com/science/article/pii/S000925411630657X [52] ROTHMAN D H, HAYES J M, SUMMONS R E. Dynamics of the Neoproterozoic carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14): 8124-8129. http://www.pnas.org/content/100/14/8124.abstract [53] KNAUTH L P, KENNEDY M J. The late Precambrian greening of the Earth[J]. Nature, 2009, 460(7256): 728-732. http://pdfs.semanticscholar.org/5034/09a687e371dcb168accde54306d855b1124b.pdf [54] SCHRAG D P, HIGGINS J A, MACDONALD F A, et al. Authigenic carbonate and the history of the global carbon cycle[J]. Science, 2013, 339(6119): 540-543. http://pdfs.semanticscholar.org/3775/40b70225cfc4118d67307509896d0317d4f7.pdf [55] CHEN Bo, HU Chunlin, MILLS B J W, et al. A short-lived oxidation event during the early Ediacaran and delayed oxygenation of the Proterozoic ocean[J]. Earth and Planetary Science Letters, 2022, 577: 117274. http://www.sciencedirect.com/science/article/pii/S0012821X21005306 [56] ISHIKAWA T, UENO Y, SHU Degan, et al. Irreversible change of the oceanic carbon cycle in the earliest Cambrian: high-resolution organic and inorganic carbon chemostratigraphy in the Three Gorges area, South China[J]. Precambrian Research, 2013, 225: 190-208. http://www.sciencedirect.com/science/article/pii/S0301926811002051 [57] GOLDBERG T, STRAUSS H, GUO Qingjun, et al. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: evidence from biogenic sulphur and organic carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 175-193. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=A2A4DD45357D8483F380774539FFE72B?doi=10.1.1.504.9316&rep=rep1&type=pdf [58] KUMP L R, ARTHUR M A. Interpreting carbon-isotope excursions: carbonates and organic matter[J]. Chemical Geology, 1999, 161(1/3): 181-198. http://eesc.ldeo.columbia.edu/courses/w4937/Readings/Kump1999.pdf [59] BRAUN A, CHEN Junyuan. Plankton from Early Cambrian black shale series on the Yangtze Platform, and its influences on lithologies[J]. Progress in Natural Science, 2003, 13(10): 777-782. doi: 10.1080/10020070312331344420 [60] BÖNING P, SHAW T, PAHNKE K, et al. Nickel as indicator of fresh organic matter in upwelling sediments[J]. Geochimica et Cosmochimica Acta, 2015, 162: 99-108. http://smartsearch.nstl.gov.cn/paper_detail.html?id=37601bd50e63b94e986b8600545190da [61] FENG Lianjun, LI Chao, HUANG Jing, et al. A sulfate control on marine mid-depth euxinia on the Early Cambrian (ca. 529-521 Ma) Yangtze platform, South China[J]. Precambrian Research, 2014, 246: 123-133. http://www.researchgate.net/profile/Lian_Jun_Feng/publication/260807370_A_sulfate_control_on_marine_mid-depth_euxinia_on_the_early_Cambrian_(ca._529-521_Ma)_Yangtze_platform_South_China/links/0f317535cbc327856a000000.pdf