Assessment methods and potential of shale oil resources in China
-
摘要: 鉴于我国页岩油在类型划分、评价方法、评价参数标准和资源潜力预测等方面存在较大分歧的现状,将页岩油划分为夹层页岩油、纯页岩油和原位转化页岩油三大类。根据这三大类页岩油明显不同的赋存与形成特征,分别建立了相应的容积法、基于热解烃S1含量体积法、基于氢指数变化的生烃量法资源量计算方法模型,并确定各种方法模型的关键参数及参数下限标准,最后按照统一的参数标准评价了我国主要盆地页岩层系的三大类页岩油资源量。我国纯页岩油、夹层页岩油、原位转化页岩油地质资源量分别为145.4×108, 95.1×108,708.2×108 t, 可采资源量分别为9.4×108,7.1×108,460.3×108 t。评价结果表明,我国页岩油资源丰富,是推动国内原油增产稳产的重要接替领域。Abstract: In view of the large differences in type classification, assessment methods, evaluation parameters and resource potential prediction of shale oil in China, shale oil is classified into three categories: interlayer shale oil, pure shale oil and in-situ converted shale oil. According to the obviously different occurrence and formation characteristics of the three types of shale oil, the corresponding resource calculation method models, respectively named volume method, volume method based on pyrolysed hydrocarbon S1 content and hydrocarbon generation quantity method based on hydrogen index variation, were put forward, and the key parameters and their lowest threshold standards of each model were determined. Finally, the three categories of shale oil resources in the major basins in China were evaluated according to the unified parameter criterion. The in-place resources of pure shale oil, interlayer shale oil and in-situ converted shale oil are 145.4×108 t, 95.1×108 t and 708.2×108 t, respectively, and the recoverable resources are 9.4×108 t, 7.1×108 t and 460.3×108 t, respectively. The evaluation results show that China is rich in shale oil resources, which is an important replacement field to promote domestic crude oil production increase and stabilization.
-
图 1 鄂尔多斯盆地评价区延长组7段页岩氢指数IH, pd与Ro的关系[24]
Figure 1. Relationship between hydrogen index IH, pd and Ro of shale in Chang 7 member of Yanchang Formation in evaluation area of Ordos Basin
图 2 鄂尔多斯盆地延长组7段储层孔隙度、渗透率与含油气性关系[24]
Figure 2. Relationship between porosity, permeability and hydrocarbon-bearing property of reservoirs in Chang 7 member of Yanchang Formation in Ordos Basin
表 1 不同学者或机构对中国页岩油资源评价结果
Table 1. Assessment results of shale oil resources in China by different scholars or institutions
表 2 页岩油分类
Table 2. Shale oil classification
层系 粉砂岩、细砂岩、碳酸盐岩
累计厚度占层系厚度比/%岩性 单层厚度及Ro 类型 富有机质
页岩层系<30 粉砂岩、细砂岩、碳酸盐岩 单层厚度≥5 m 致密油(非页岩油) 单层厚度<5 m 夹层页岩油 泥页岩 Ro≥0.8% 纯页岩油 Ro<0.8% 原位转化页岩油 表 3 纯页岩油与夹层页岩油评价参数下限标准
Table 3. Lowest threshold standards for evaluation parameters of pure shale oil and interlayer shale oil
页岩油类型 关键评价参数取值下限 纯页岩油 无S1平面分布图:w(TOC)≥2.0%,Ro≥0.8%,页岩厚度≥5 m;具备S1平面分布图:S1>1.0 mg/g(S1未恢复轻烃损失),页岩厚度≥5 m 夹层页岩油 夹层厚度≥5 m;平均孔隙度≥4%;含油饱和度≥30% 页岩+ 夹层页岩油 页岩层:w(TOC)≥2.0%,Ro≥0.8%;夹层:平均孔隙度≥4%,含油饱和度≥30%;页岩层+夹层厚度≥5 m 注:表中数据据郭秋麟等[24]修改。 表 4 鄂尔多斯盆地延长组页岩样品热模拟实验结果
Table 4. Thermal simulation experiment results of shale samples from Yanchang Formation in Ordos Basin
样品 w(TOC)/% S1/(mg·g-1) S2/(mg·g-1) Ro/% 总产量/(kg·t-1) 产油量/(kg·t-1) 产气量/(m3·t-1) (油/总资源当量)/% 残留S2/(mg·g-1) IH, pd/(mg·g-1) IH, end/(mg·g-1) LI 38-1 23.70 4.06 79.88 0.8 54 36 22.50 66.67 29.94 337.05 126.33 LI 38-2 23.70 4.06 79.88 0.8 65 47 22.50 72.31 18.94 337.05 79.92 HJF-out 24.73 6.29 115.62 0.5 73 52 26.00 71.23 48.91 467.53 197.78 平均值 24.04 4.80 91.79 0.7 64 45 23.67 70.07 32.60 380.54 134.67 表 5 中国典型层系页岩油资源潜力
Table 5. Shale oil resource potential of typical formations in China
盆地 层系 页岩油类型 面积/km2 平均厚度/m 资源丰度/(104 t·km-2) 单储系数/(104 t·km-2·m-1) 地质资源量/108 t 鄂尔多斯盆地 延长组长73亚段 夹层 17 006 8.3 16.3 1.96 27.73 纯页岩 24 724 32.6 15.8 0.48 39.07 原位转化 16 932 27.8 204.2 7.35 345.80 松辽盆地北部 青山口组一段 夹层型 650 8.0 48.5 6.06 3.15 青山口组二段 夹层型 840 25.0 66.2 2.65 5.56 青山口组一段 纯页岩 14 481 34.3 36.1 1.05 52.23 嫩江组 原位转化 8 166 47.7 323.2 6.80 263.90 准噶尔盆地吉木萨尔凹陷 芦草沟组 夹层(上甜点) 518 12.7 92.5 7.28 4.79 夹层(下甜点) 910 14.5 79.1 5.46 7.20 纯页岩 828 204.7 43.8 0.21 3.63 原位转化 516 12.5 126.0 10.08 6.50 注:本文资源量定义采用《油气矿产资源储量分类:GB/T 19492-2004》标准,下同。 表 6 中国页岩油资源潜力
Table 6. Shale oil resource potential in China
类型 盆地/层系 地质资源量/108/t 可采资源量/108 t 可采系数/% 经济性 纯页岩油 鄂尔多斯/长73亚段 39.1 2.0 5 除青山口组高演化、高含气页岩油外,其他部分目前还不具备经济开采价值 松辽北部/青山口组一段 52.2 4.7 9 准噶尔/芦草沟组 3.6 0.2 5 其他 50.5 2.5 5 合计 145.4 9.4 6.5 夹层页岩油 鄂尔多斯/长73亚段 27.7 2.2 8 资源较集中的层系已初步具备经济开采价值 松辽北部/青山口组一段、二段 8.7 0.6 7 准噶尔/芦草沟组 12.0 1 8 其他 46.7 3.3 7 合计 95.1 7.1 7.5 原位转化页岩油 鄂尔多斯/长73亚段 345.8 224.8 65 今后5年到10年,科学技术获得重大突破后,这部分资源才真正具备开采价值 松辽北部/嫩江组 263.9 171.5 65 准噶尔/芦草沟组 6.5 4.2 64 其他 92.0 59.8 65 合计 708.2 460.3 65 -
[1] ROMERO-SARMIENTO M F. A quick analytical approach to estimate both free versus sorbed hydrocarbon contents in liquid-rich source rocks[J]. AAPG Bulletin, 2019, 103(9): 2031-2043. doi: 10.1306/02151918152 [2] LI Jinbu, WANG Min, CHEN Zhuoheng, et al. Evaluating the total oil yield using a single routine Rock-Eval experiment on as-received shales[J]. Journal of Analytical and Applied Pyrolysis, 2019, 144: 104707. doi: 10.1016/j.jaap.2019.104707 [3] GUO Qiulin, CHEN Xioming, LIUZHUANG Xiaoxue, et al. Evaluation method for resource potential of shale oil in the Triassic Yanchang Formation of the Ordos Basin, China[J]. Energy Exploration & Exploitation, 2020, 38(4): 841-866. http://www.xueshufan.com/publication/3006612195 [4] LI Maowen, CHEN Zhuoheng, QIAN Menhui, et al. What are in pyrolysis S1 peak and what are missed?Petroleum compositional characteristics revealed from programed pyrolysis and implications for shale oil mobility and resource potential[J]. International Journal of Coal Geology, 2020, 217: 103321. doi: 10.1016/j.coal.2019.103321 [5] EIA. Drilling Productivity report for key tight oil and shale regions[R]. [S. l. ]: Energy Information Administration, U.S., 2017. [6] HAN Yuanjia, HORSFIELD B, MAHLSTEDT N, et al. Factors controlling source and reservoir characteristics in the Niobrara shale oil system, Denver Basin[J]. AAPG Bulletin, 2019, 103(9): 2045-2072. doi: 10.1306/0121191619717287 [7] KUSKE S, HORSFIELD B, JWEDA J, et al. Geochemical factors controlling the phase behavior of Eagle Ford shale petroleum fluids[J]. AAPG Bulletin, 2019, 103(4): 835-870. doi: 10.1306/09051817227 [8] 杨雷, 金之钧. 全球页岩油发展及展望[J]. 中国石油勘探, 2019, 24(5): 553-559. doi: 10.3969/j.issn.1672-7703.2019.05.002YANG Lei, JIN Zhijun. Global shale oil development and prospects[J]. China Petroleum Exploration, 2019, 24(5): 553-559. doi: 10.3969/j.issn.1672-7703.2019.05.002 [9] 李倩文, 马晓潇, 高波, 等. 美国重点页岩油区勘探开发进展及启示[J]. 新疆石油地质, 2021, 42(5): 630-640. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202105019.htmLI Qianwen, MA Xiaoxiao, GAO Bo, et al. Progress and enlightenment of exploration and development of major shale oil zones in the USA[J]. Xinjiang Petroleum Geology, 2021, 42(5): 630-640. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202105019.htm [10] 孙龙德. 古龙页岩油(代序)[J]. 大庆石油地质与开发, 2020, 39(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202003001.htmSUN Longde. Gulong shale oil (preface)[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202003001.htm [11] 何文渊, 蒙启安, 张金友. 松辽盆地古龙页岩油富集主控因素及分类评价[J]. 大庆石油地质与开发, 2021, 40(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202105001.htmHE Wenyuan, MENG Qi'an, ZHANG Jinyou. Controlling factors and their classification-evaluation of Gulong shale oil enrichment in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202105001.htm [12] 冯子辉, 霍秋立, 曾花森, 等. 松辽盆地古龙页岩有机质组成与有机质孔形成演化[J]. 大庆石油地质与开发, 2021, 40(5): 40-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202105004.htmFENG Zihui, HUO Qiuli, ZENG Huasen, et al. Organic matter compositions and organic pore evolution in Gulong shale of Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(5): 40-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202105004.htm [13] 付金华, 牛小兵, 淡卫东, 等. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J]. 中国石油勘探, 2019, 24(5): 601-614. doi: 10.3969/j.issn.1672-7703.2019.05.007FU Jinhua, NIU Xiaobing, DAN Weidong, et al. The geological characteristics and the progress on exploration and development of shale oil in Chang 7 Member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(5): 601-614. doi: 10.3969/j.issn.1672-7703.2019.05.007 [14] 付金华, 李士祥, 牛小兵, 等. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践[J]. 石油勘探与开发, 2020, 47(5): 870-883. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005005.htmFU Jinhua, LI Shixiang, NIU Xiaobing, et al. Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(5): 870-883. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005005.htm [15] 付金华, 刘显阳, 李士祥, 等. 鄂尔多斯盆地三叠系延长组长7段页岩油勘探发现与资源潜力[J]. 中国石油勘探, 2021, 26(5): 1-11. doi: 10.3969/j.issn.1672-7703.2021.05.001FU Jinhua, LIU Xianyang, LI Shixiang, et al. Discovery and resource potential of shale oil of Chang 7 member, Triassic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2021, 26(5): 1-11. doi: 10.3969/j.issn.1672-7703.2021.05.001 [16] 范柏江, 晋月, 师良, 等. 鄂尔多斯盆地中部三叠系延长组7段湖相页岩油勘探潜力[J]. 石油与天然气地质, 2021, 42(5): 1078-1088. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202105007.htmFAN Bojiang, JIN Yue, SHI Liang, et al. Shale oil exploration potential in central Ordos Basin: a case study of Chang 7 lacustrine shale[J]. Oil & Gas Geology, 2021, 42(5): 1078-1088. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202105007.htm [17] 郭秋麟, 王建, 陈晓明, 等. 页岩油原地量和可动油量评价方法与应用[J]. 石油与天然气地质, 2021, 42(6): 1451-1463. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106019.htmGUO Qiulin, WANG Jian, CHEN Xiaoming, et al. Discussion on evaluation method of total oil and movable oil in-place[J]. Oil & Gas Geology, 2021, 42(6): 1451-1463. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106019.htm [18] 支东明, 唐勇, 郑孟林, 等. 准噶尔盆地玛湖凹陷风城组页岩油藏地质特征与成藏控制因素[J]. 中国石油勘探, 2019, 24(5): 615-623. doi: 10.3969/j.issn.1672-7703.2019.05.008ZHI Dongming, TANG Yong, ZHENG Menglin, et al. Geological characteristics and accumulation controlling factors of shale reservoirs in Fengcheng Formation, Mahu Sag, Junggar Basin[J]. China Petroleum Exploration, 2019, 24(5): 615-623. doi: 10.3969/j.issn.1672-7703.2019.05.008 [19] 霍进, 支东明, 郑孟林, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油藏特征与形成主控因素[J]. 石油实验地质, 2020, 42(4): 506-512. doi: 10.11781/sysydz202004506HUO Jin, ZHI Dongming, ZHENG Menglin, et al. Characteristics and main controls of shale oil reservoirs in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 506-512. doi: 10.11781/sysydz202004506 [20] 章敬. 非常规油藏地质工程一体化效益开发实践: 以准噶尔盆地吉木萨尔凹陷芦草沟组页岩油为例[J]. 断块油气田, 2021, 28(2): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102003.htmZHANG Jing. Effective development practices of geology-engineering integration on unconventional oil reservoirs: taking Lucaogou Formation shale oil in Jimsar Sag, Junggar Basin for example[J]. Fault-Block Oil and Gas Field, 2021, 28(2): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102003.htm [21] 刘金, 王剑, 张宝真, 等. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组微—纳米孔隙页岩油原位赋存特征[J]. 石油实验地质, 2022, 44(2): 270-278. doi: 10.11781/sysydz202202270LIU Jin, WANG Jian, ZHANG Baozhen, et al. In situ occurrence of shale oil in micro-nano pores in Permian Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2022, 44(2): 270-278. doi: 10.11781/sysydz202202270 [22] 孙换泉, 蔡勋育, 周德华, 等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探, 2019, 24(5): 569-575. doi: 10.3969/j.issn.1672-7703.2019.05.004SUN Huanquan, CAI Xunyu, ZHOU Dehua, et al. Practice and prospect of SINOPEC shale oil exploration[J]. China Petroleum Exploration, 2019, 24(5): 569-575. doi: 10.3969/j.issn.1672-7703.2019.05.004 [23] 杜金虎, 胡素云, 庞正炼, 等. 中国陆相页岩油类型、潜力及前景[J]. 中国石油勘探, 2019, 24(5): 560-568. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201905003.htmDU Jinhu, HU Suyun, PANG Zhenglian, et al. The types, potentials and prospects of continental shale oil in China[J]. China Petroleum Exploration, 2019, 24(5): 560-568. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201905003.htm [24] 郭秋麟, 白雪峰, 何文军, 等. 页岩油资源评价方法、参数标准及典型评价实例[J]. 中国石油勘探, 2022, 27(5): 27-41. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202205003.htmGUO Qiulin, BAI Xuefeng, HE Wenjun, et al. Shale oil resource assessment method, parameter standards and typical case studies[J]. China Petroleum Exploration, 2022, 27(5): 27-41. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202205003.htm [25] 赵文智, 胡素云, 朱如凯, 等. 陆相页岩油形成与分布[M]. 北京: 石油工业出版社, 2022.ZHAO Wenzhi, HU Suyun, ZHU Rukai, et al. Formation and distribution of continental shale oil[M]. Beijing: Petroleum Industry Press, 2022. [26] 赵文智, 胡素云, 侯连华, 等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发, 2020, 47(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001002.htmZHAO Wenzhi, HU Suyun, HOU Lianhua, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001002.htm [27] 金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htmJIN Zhijun, BAI Zhenrui, GAO Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm [28] 李玉喜, 张金川. 我国非常规油气资源类型和潜力[J]. 国际石油经济, 2011, 19(3): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-GJJJ201103012.htmLI Yuxi, ZHANG Jinchuan. Types of unconventional oil and gas resources in China and their development potential[J]. International Petroleum Economics, 2011, 19(3): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-GJJJ201103012.htm [29] EIA. Technically recoverable shale oil and shale gas resources: United Kingdom[R]. Washington: U.S. Department of Energy, 2015. [30] 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htmZOU Caineng, YANG Zhi, CUI Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm [31] 郭旭升, 赵永强, 张文涛, 等. 四川盆地元坝地区千佛崖组页岩油气富集特征与主控因素[J]. 石油实验地质, 2021, 43(5): 749-757. doi: 10.11781/sysydz202105749GUO Xusheng, ZHAO Yongqiang, ZHANG Wentao, et al. Accumulation conditions and controlling factors for the enrichment of shale oil and gas in the Jurassic Qianfoya Formation, Yuanba area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(5): 749-757. doi: 10.11781/sysydz202105749 [32] 宁方兴. 济阳坳陷不同类型页岩油差异性分析[J]. 油气地质与采收率, 2014, 21(6): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201406002.htmNING Fangxing. Difference analysis on different types of shale oils in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(6): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201406002.htm [33] 张金川, 林腊梅, 李玉喜, 等. 页岩油分类与评价[J]. 地学前缘, 2012, 19(5): 322-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205032.htmZHANG Jinchuan, LIN Lamei, LI Yuxi, et al. Classification and evaluation of shale oil[J]. Earth Science Frontiers, 2012, 19(5): 322-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205032.htm [34] MODICA C J, LAPIERRE S G. Estimation of kerogen porosity in source rocks as a function of thermal transformation: example from the Mowry shale in the Powder River Basin of Wyoming[J]. AAPG Bulletin, 2012, 96(1): 87-108. http://www.nstl.gov.cn/paper_detail.html?id=5410639319f6a004a387cd409e9bd9a3 [35] CHEN Zhuoheng, JIANG Chunqing. A revised method for organic porosity estimation in shale reservoirs using Rock-Eval data: example from Duvernay Formation in the Western Canada Sedimentary Basin[J]. AAPG Bulletin, 2016, 100(3): 405-422. http://www.nstl.gov.cn/paper_detail.html?id=236920cf8d167e1ca4c55c5aabc32301 [36] 杨维磊, 李新宇, 徐志, 等. 鄂尔多斯盆地安塞地区长7段页岩油资源潜力评价[J]. 海洋地质前沿, 2019, 35(4): 48-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201904006.htmYANG Weilei, LI Xingyu, XU Zhi, et al. Shale oil resources assessment for the Member Chang 7 in Ansai area of Ordos Basin[J]. Marine Geology Frontiers, 2019, 35(4): 48-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201904006.htm [37] 薛海涛, 田善思, 王伟明, 等. 页岩油资源评价关键参数: 含油率的校正[J]. 石油与天然气地质, 2016, 37(1): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601004.htmXUE Haitao, TIAN Shansi, WANG Weiming, et al. Correction of oil content: one key parameter in shale oil resource assessment[J]. Oil & Gas Geology, 2016, 37(1): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601004.htm [38] 余涛, 卢双舫, 李俊乾, 等. 东营凹陷页岩油游离资源有利区预测[J]. 断块油气田, 2018, 25(1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201801004.htmYU Tao, LU Shuangfang, LI Junqian, et al. Prediction for favorable area of shale oil free resources in Dongying Sag[J]. Fault-Block Oil & Gas Field, 2018, 25(1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201801004.htm [39] 朱日房, 张林晔, 李政, 等. 陆相断陷盆地页岩油资源潜力评价: 以东营凹陷沙三段下亚段为例[J]. 油气地质与采收率, 2019, 26(1): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901014.htmZHU Rifang, ZHANG Linye, LI Zheng, et al. Evaluation of shale oil resource potential in continental rift basin: a case study of Lower Es3 Member in Dongying Sag[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901014.htm [40] CLARKSON C R, PEDERSEN P K. Production analysis of Western Canadian unconventional light oil plays[C]//Proceedings of the Canadian Unconventional Resources Conference. Calgary: SPE, 2011. [41] GUO Qiulin, WANG Shejiao, CHEN Xiaoming. Assessment on tight oil resources in major basins in China[J]. Journal of Asian Earth Sciences, 2019, 178: 52-63. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S1367912018301615&originContentFamily=serial&_origin=article&_ts=1526187097&md5=96896f29fb431af736e6145f74cb87c7 [42] LI Maowen, CHEN Zhuoheng, MA Xiaoxiao, et al. A numerical method for calculating total oil yield using a single routine Rock-Eval program: a case study of the Eocene Shahejie Formation in Dongying Depression, Bohai Bay Basin, China[J]. International Journal of Coal Geology, 2018, 191: 49-65. http://www.sciencedirect.com/science/article/pii/S0166516218300594 [43] LI Maowen, CHEN Zhuoheng, MA Xiaoxiao, et al. Shale oil resource potential and oil mobility characteristics of the Eocene-Oligocene Shahejie Formation, Jiyang Super-Depression, Bohai Bay Basin of China[J]. International Journal of Coal Geology, 2019, 204: 130-143. http://www.sciencedirect.com/science/article/pii/S0166516218304051 [44] 谌卓恒, 黎茂稳, 姜春庆, 等. 页岩油的资源潜力及流动性评价方法: 以西加拿大盆地上泥盆统Duvernay页岩为例[J]. 石油与天然气地质, 2019, 40(3): 0459-0458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903003.htmCHEN Zhuoheng, LI Maowen, JIANG Chunqing, et al. Shale oil resource potential and its mobility assessment: a case study of Upper Devonian Duvernay shale in Western Canada Sedimentary Basin[J]. Oil & Gas Geology, 2019, 40(3): 459-468. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903003.htm [45] GUO Qiulin, CHEN Xiaoming, WANG Jian, et al. An improved hydrocarbon generating model of source rocks and its application: a case study of shale oil in-situ transformation of the Yanchang Formation in the Ordos Basin[J]. Petroleum Science and Technology, 2021, 39(3): 63-87. doi: 10.1080/10916466.2020.1842448 [46] 国家市场监督管理总局, 国家标准化管理委员会. 页岩油地质评价方法: GB/T 38718-2020[S]. 北京: 中国标准出版社, 2020.State Administration of Market Supervision and Administration of the People's Republic of China, Standardization Administration of the People's Republic of China. Geological evaluating methods for shale oil: GB/T 38718-2020[S]. Beijing: Stan-dards Press of China, 2020. [47] 杨智, 邹才能, 付金华, 等. 基于原位转化/改质技术的陆相页岩选区评价: 以鄂尔多斯盆地三叠系延长组7段页岩为例[J]. 深圳大学学报(理工版), 2017, 34(3): 221-228. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201703001.htmYANG Zhi, ZOU Caineng, FU Jinhua, et al. Selection of pilot areas for testing in-situ conversion/upgrading processing in lacustrine shale: a case study of Yanchang-7 Member in Ordos Basin[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(3): 221-228. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201703001.htm [48] 柳广第, 刘成林, 郭秋麟. 油气资源评价[M]. 北京: 石油工业出版社, 2018: 152-165.LIU Guangdi, LIU Chenglin, GUO Qiulin. Petroleum resource assessment[M]. Beijing: Petroleum Industry Press, 2018: 152-165. [49] 郭秋麟, 陈宁生, 吴晓智, 等. 致密油资源评价方法研究[J]. 中国石油勘探, 2013, 18(2): 67-76. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201302013.htmGUO Qiulin, CHEN Ningsheng, WU Xiaozhi, et al. Method for assessment of tight oil resources[J]. China Petroleum Exploration, 2013, 18(2): 67-76. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201302013.htm [50] 黄东, 段勇, 李育聪, 等. 淡水湖相页岩油气有机碳含量下限研究: 以四川盆地侏罗系大安寨段为例[J]. 中国石油勘探, 2018, 23(6): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201806005.htmHUANG Dong, DUAN Yong, LI Yucong, et al. Study on the TOC lower limit of shale oil and gas of freshwater lake facies: a case study on the Jurassic Da'anzhai Member in the Sichuan Basin[J]. China Petroleum Exploration, 2018, 23(6): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201806005.htm [51] 卢双舫, 黄文彪, 陈方文, 等. 页岩油气资源分级评价标准探讨[J]. 石油勘探与开发, 2012, 39(2): 249-256. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202018.htmLU Shuangfang, HUANG Wenbiao, CHEN Fangwen, et al. Classification and evaluation criteria of shale oil and gas resources: discussion and application[J]. Petroleum Exploration and Development, 2012, 39(2): 249-256. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202018.htm [52] 张金川, 林腊梅, 李玉喜, 等. 页岩油分类与评价[J]. 地学前缘, 2012, 19(5): 322-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205032.htmZHANG Jinchuan, LIN Lamei, LI yuxi, et al. Classification and evaluation of shale oil[J]. Earth Science Frontiers, 2012, 19(5): 322-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205032.htm [53] 郭秋麟, 米敬奎, 王建, 等. 改进的烃源岩生烃潜力模型及关键参数模板[J]. 中国石油勘探, 2019, 24(5): 661-669. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201905013.htmGUO Qiulin, MI Jingkui, WANG Jian, et al. An improved hydrocarbon generation model of source rocks and key parameter templates[J]. China Petroleum Exploration, 2019, 24(5): 661-669. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201905013.htm [54] 赵文智, 胡素云, 侯连华. 页岩油地下原位转化的内涵与战略地位[J]. 石油勘探与开发, 2018, 45(4): 537-545. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804001.htmZHAO Wenzhi, HU Suyun, HOU Lianhua. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China[J]. Petroleum Exploration and Development, 2018, 45(4): 537-545. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804001.htm [55] 邱振, 吴晓智, 唐勇, 等. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组致密油资源评价[J]. 天然气地球科学, 2016, 27(9): 1688-1698. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201609015.htmQIU Zhen, WU Xiaozhi, TANG Yong, et al. Resource assessment of tight oil from the Permian Lucaogou Formation in Jimusar Sag, Junggar Basin, China[J]. Natural Gas Geoscience, 2016, 27(9): 1688-1698. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201609015.htm [56] 李年银, 王元, 陈飞, 等. 油页岩原位转化技术发展现状及展望[J]. 特种油气藏, 2022, 29(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202203001.htmLI Nianyin, WANG Yuan, CHEN Fei, et al. Development status and prospects of in-situ conversion technology in oil shale[J]. Special Oil & Gas Reservoirs, 2022, 29(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202203001.htm [57] 徐金泽, 陈掌星, 周德胜, 等. 油页岩原位转化热解反应特征研究综述[J]. 西南石油大学学报(自然科学版), 2021, 43(5): 220-226. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202105022.htmXU Jinze, CHEN Zhangxing, ZHOU Desheng, et al. Review on the characteristics of pyrolysis during in-situ conversion of oil shale[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(5): 220-226. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202105022.htm [58] 胡素云, 赵文智, 侯连华, 等. 中国陆相页岩油发展潜力与技术对策[J]. 石油勘探与开发, 2020, 47(4): 819-828. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202004021.htmHU Suyun, ZHAO Wenzhi, HOU Lianhua, et al. Development potential and technical strategy of continental shale oil in China[J]. Petroleum Exploration and Development, 2020, 47(4): 819-828. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202004021.htm