Experimental evaluation and hydrocarbon significance of natural fractures in Shunbei ultra-deep carbonate reservoir, Tarim Basin
-
摘要: 塔里木盆地顺北特深碳酸盐岩走滑断控油气藏储量丰富,大型走滑断裂和天然裂缝是油气主要储存空间和流动通道,研究此类储层的天然裂缝发育特征具有重要的意义。以顺北地区5口钻井储层段39块灰岩样品和7块白云岩样品为研究对象,通过对实钻取心样品开展岩相薄片分析、天然裂缝精细描述和脆性实验评价,研究顺北储层天然裂缝发育主控因素和影响规律。顺北地区中、下奥陶统鹰山组和一间房组储层岩性为白云岩和灰岩,岩相包括颗粒灰岩、粒泥灰岩、泥粒灰岩、粘结岩、泥灰岩、硅化灰岩和粉细晶白云岩、中粗晶白云岩;在灰岩样品中,泥灰岩脆性指数和天然裂缝发育密度最高,粘结岩脆性指数和天然裂缝发育密度最低;在白云岩样品中,中粗晶白云岩的脆性指数高于粉细晶白云岩,且样品晶粒越粗,天然裂缝越发育。天然裂缝发育密度与岩石样品脆性指数之间存在明显正相关关系;白云岩的孔渗物性和脆性指数高于灰岩,在相同脆性指数条件下,灰岩的裂缝发育能力更强。因此,灰岩地层中的高脆性段更有可能成为顺北地区的地质甜点区。Abstract: There are abundant hydrocarbon resources in the strike-slip fault-controlled ultra-deep carbonate reservoirs in the Shunbei area, Tarim Basin. Large strike-slip faults and natural fractures are the main storage space and flow channel of hydrocarbon resources. It is of great significance to study the natural fracture development characteristics in such reservoirs. 39 limestone samples and 7 dolomite samples from 5 wells in Shunbei area are taken as research objects. Through the analysis of thin section of lithofacies, fine description of natural fractures and brittleness test evaluation of core samples, the main controlling factors and influence laws of natural fracture development in Shunbei reservoir are studied. It is found that the reservoir lithology of Middle and Lower Ordovician Yingshan Formation and Yijianfang Formation in Shunbei area is dolomite and limestone, and the lithofacies include grainstone, wackestone, packstone, boundstone, muddy limestone, silicified limestone, silty-fine crystal dolomite and medium-coarse crystal dolomite. In limestone samples, muddy limestone has the highest brittleness index and natural fracture development density, while boundstone has the lowest brittleness index and natural fracture development density. In dolomite samples, the brittleness index of medium-coarse crystalline dolomite is higher than that of silty-fine crystal dolomite, and the coarser the grains are, the more developed the natural fractures are. There is a positive correlation between the natural fracture development density and the brittleness index of rock samples. The porosity, permeability and brittleness index of dolomite are higher than those of limestone. Under the same brittleness index, the fracture development ability of limestone is stronger. Therefore, the highly brittle section of limestone stratum is more likely to be the geological sweet spot in Shunbei area.
-
表 1 塔里木盆地顺北地区储层岩石样品裂缝发育特征统计
Table 1. Statistics of fracture development characteristics of rock samples from Shunbei area, Tarim Basin
岩性 井名 数量 取样深度/m 层位 岩相 层理缝密度/(条/样品) 构造裂缝密度/(条/样品) 天然裂缝平均密度/(条/样品) 灰岩 S-16 4 6 470.66,6 467.15,6 467.60,6 469.27 一间房组 硅化岩 0 1.25 1.25 S-41 2 7 535.39,7 538.75 一间房组 粘结岩 1 0 0.50 S-14 3 6 782.51,6 732.43,6 733.69 一间房组 0 0.33 S-41 7 7 536.30,7 536.70,7 537.22,7 537.65,7 537.75,7 538.73,7 538.85 一间房组 泥粒灰岩 1 0.57 1.57 S-41 9 7 539.13,7 539.31,7 539.08,7 539.30,7 540.77,7 541.11,7 541.21,7 541.70,7 541.91 一间房组 颗粒灰岩 2 0.33 1.42 S-14 7 6 739.39,6 740.42,6 781.13,6 772.59,6 785.74,6 772.29,6 773.38 一间房组 0 0.71 S-16 1 6 468.94 一间房组 0 1 SY-1 2 6 646.62,6 647.58 一间房组 0 0 S-41 3 7 542.66,7 543.05,7 543.6 一间房组 粒泥灰岩 1 2 3 SY-1 1 6 648.05 一间房组 泥灰岩 3 0 3 白云岩 SP-1 3 7 718.19,7 719.56,7 720.66 鹰山组 粉细晶白云岩 0 0 0 SP-1 4 7 729.61,7 730.28,7 730.86,7 731.11 鹰山组 中粗晶白云岩 0 1 1 表 2 塔里木盆地顺北地区储层岩石样品力学参数及脆性指数统计
Table 2. Statistics of mechanical parameters and brittleness index of rock samples from Shunbei area, Tarim Basin
样品编号 体积密度/(g·cm-3) 纵波时差/(μs·m-1) 横波时差/(μs·m-1) 剪切模量/GPa 杨氏模量/GPa 泊松比 脆性指数 岩相 S-1 2.728 166.439 313.837 27.700 72.260 0.304 0.522 颗粒灰岩 S-2 2.750 174.857 326.669 25.771 66.963 0.299 0.451 S-3 2.722 174.806 326.724 25.496 66.262 0.299 0.437 S-4 2.714 176.312 324.640 25.755 66.489 0.291 0.476 S-5 2.704 169.688 328.833 25.008 65.947 0.319 0.354 S-6 2.713 334.985 604.050 25.252 65.774 0.302 0.417 S-7 2.716 176.276 331.843 24.662 64.290 0.303 0.387 S-8 2.713 341.626 606.175 26.280 67.553 0.285 0.517 S-9 2.693 171.843 322.184 25.946 67.521 0.301 0.452 S-10 2.718 350.675 636.818 27.211 71.555 0.315 0.468 S-11 2.723 183.050 328.797 25.186 64.244 0.275 0.499 S-12 2.710 172.598 323.901 25.827 67.238 0.302 0.445 S-13 2.697 331.424 599.603 26.841 70.173 0.307 0.474 S-14 2.727 166.083 313.153 27.807 72.538 0.304 0.527 S-15 2.719 158.615 311.979 27.932 74.060 0.326 0.467 S-16 2.709 189.924 322.592 23.431 59.669 0.273 0.428 S-17 2.678 203.297 357.782 20.918 52.779 0.262 0.355 S-18 2.704 355.342 631.133 23.793 61.203 0.286 0.403 S-19 2.705 185.997 335.519 24.033 61.437 0.278 0.439 S-20 2.709 171.954 324.064 25.795 67.276 0.304 0.436 泥粒灰岩 S-21 2.720 170.379 320.279 26.514 69.077 0.303 0.474 S-22 2.715 165.807 320.291 26.464 69.704 0.317 0.427 S-23 2.712 169.402 327.735 25.253 66.553 0.318 0.368 S-24 2.712 162.181 313.437 27.600 72.710 0.317 0.478 S-25 2.705 168.630 320.417 26.344 68.939 0.308 0.448 S-26 2.698 171.595 323.035 25.851 67.392 0.303 0.441 S-27 2.710 167.690 316.541 27.047 70.590 0.305 0.491 粒泥灰岩 S-28 2.731 171.999 322.612 26.239 68.297 0.301 0.465 S-29 2.728 166.855 322.781 26.181 68.996 0.318 0.411 S-30 2.705 343.395 613.517 24.389 63.034 0.292 0.351 粘结岩 S-31 2.716 338.242 617.805 24.685 64.976 0.316 0.347 S-32 2.737 166.374 316.558 27.315 71.521 0.309 0.383 S-33 2.730 160.098 311.187 28.190 74.422 0.320 0.405 S-34 2.599 220.357 360.724 19.975 48.035 0.202 0.492 硅化岩 S-35 2.675 204.219 360.114 20.626 52.099 0.263 0.447 S-36 2.709 198.312 344.915 22.772 57.071 0.253 0.474 S-37 2.699 218.195 377.262 18.961 47.352 0.249 0.392 S-38 2.713 200.267 367.282 20.110 51.821 0.288 0.359 S-39 2.729 176.204 319.113 26.799 68.642 0.281 0.555 泥灰岩 S-40 2.793 351.105 601.742 25.746 63.807 0.239 0.639 粉细晶白云岩 S-41 2.801 192.518 329.330 25.830 64.080 0.240 0.638 S-42 2.795 350.021 595.536 25.970 63.808 0.228 0.682 S-43 2.760 193.467 323.434 26.388 64.461 0.221 0.722 中粗晶白云岩 S-44 2.816 187.875 322.560 27.067 67.303 0.243 0.683 S-45 2.826 179.620 302.197 30.944 75.927 0.227 0.901 S-46 2.835 190.357 321.666 27.401 67.436 0.231 0.737 -
[1] 赵文智, 沈安江, 乔占峰, 等. 中国碳酸盐岩沉积储层理论进展与海相大油气田发现[J]. 中国石油勘探, 2022, 27(4): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202204001.htmZHAO Wenzhi, SHEN Anjiang, QIAO Zhanfeng, et al. Theoretical progress in carbonate reservoir and discovery of large marine oil and gas fields in China[J]. China Petroleum Exploration, 2022, 27(4): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202204001.htm [2] 何登发, 马永生, 刘波, 等. 中国含油气盆地深层勘探的主要进展与科学问题[J]. 地学前缘, 2019, 26(1): 1-12. doi: 10.13745/j.esf.sf.2019.1.20HE Dengfa, MA Yongsheng, LIU Bo, et al. Main advances and key issues for deep-seated exploration in petroliferous basins in China[J]. Earth Science Frontiers, 2019, 26(1): 1-12. doi: 10.13745/j.esf.sf.2019.1.20 [3] 马永生, 黎茂稳, 蔡勋育, 等. 海相深层油气富集机理与关键工程技术基础研究进展[J]. 石油实验地质, 2021, 43(5): 737-748. doi: 10.11781/sysydz202105737MA Yongsheng, LI Maowen, CAI Xunyu, et al. Advances in basic research on the mechanism of deep marine hydrocarbon enrichment and key exploitation technologies[J]. Petroleum Geology & Experiment, 2021, 43(5): 737-748. doi: 10.11781/sysydz202105737 [4] 李映涛, 漆立新, 张哨楠, 等. 塔里木盆地顺北地区中—下奥陶统断溶体储层特征及发育模式[J]. 石油学报, 2019, 40(12): 1470-1484. doi: 10.7623/syxb201912006LI Yingtao, QI Lixin, ZHANG Shaonan, et al. Characteristics and development mode of the Middle and Lower Ordovician fault-karst reservoir in Shunbei area, Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(12): 1470-1484. doi: 10.7623/syxb201912006 [5] LI Jian, ZHANG Wenzheng, LUO Xia, et al. Paleokarst reservoirs and gas accumulation in the Jingbian field, Ordos Basin[J]. Marine and Petroleum Geology, 2008, 25(4/5): 401-415. http://www.onacademic.com/detail/journal_1000035416832810_ddc6.html [6] XIE Peiyan, GAO Zhiqian, LI Congcong, et al. Conductivity of hydraulic fracturing in tight carbonate intra-platform shoal reservoirs[J]. Journal of Petroleum Science and Engineering, 2020, 189: 106976. doi: 10.1016/j.petrol.2020.106976 [7] 邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htmDENG Shang, LI Huili, ZHANG Zhongpei, et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm [8] DENG Shang, LI Huili, ZHANG Zhongpei, et al. Structural characte-rization of intracratonic strike-slip faults in the central Tarim Basin[J]. AAPG Bulletin, 2019, 103(1): 109-137. doi: 10.1306/06071817354 [9] 唐磊, 王建峰, 曹敬华, 等. 塔里木盆地顺北地区超深断溶体油藏地质工程一体化模式探索[J]. 油气藏评价与开发, 2021, 11(3): 329-339. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103007.htmTANG Lei, WANG Jianfeng, CAO Jinghua, et al. Geology-engineering integration mode of ultra-deep fault-karst reservoir in Shunbei area, Tarim Basin[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 329-339. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103007.htm [10] 郝运轻, 宋国奇, 周广清, 等. 济阳坳陷古近系泥页岩岩石学特征对可压性的影响[J]. 石油实验地质, 2016, 38(4): 489-495. doi: 10.11781/sysydz201604489HAO Yunqing, SONG Guoqi, ZHOU Guangqing, et al. Influence of petrological characteristics on fracability of the Paleogene shale, Jiyang Depression[J]. Petroleum Geology & Experiment, 2016, 38(4): 489-495. doi: 10.11781/sysydz201604489 [11] RU Zhixing, HU Jinghong, MADNI A S, et al. A study on the optimal conditions for formation of complex fracture networks in fractured reservoirs[J]. Journal of Structural Geology, 2020, 135: 104039. http://www.sciencedirect.com/science/article/pii/S0191814119304754 [12] GALE J F W, HOLDER J. Natural fractures in some US shales and their importance for gas production[J]. Geological Society, London, Petroleum Geology Conference Series, 2010, 7(1): 1131-1140. http://www.onacademic.com/detail/journal_1000037795569110_2c08.html [13] DASHTI R, RAHIMPOUR-BONAB H, ZEINALI M. Fracture and mechanical stratigraphy in naturally fractured carbonate reservoirs: a case study from Zagros region[J]. Marine and Petroleum Geology, 2018, 97: 466-479. http://www.onacademic.com/detail/journal_1000040432893210_ae7d.html [14] 孙彪, 刘小平, 舒红林, 等. 湖相泥页岩储层脆性评价及影响因素分析: 以苏北盆地海安凹陷曲塘次凹泥页岩为例[J]. 石油实验地质, 2021, 43(6): 1006-1014. doi: 10.11781/sysydz2021061006SUN Biao, LIU Xiaoping, SHU Honglin, et al. Evaluation and influencing factors for brittleness of lacustrine shale reservoir a case study of Qutang Sub-Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2021, 43(6): 1006-1014. doi: 10.11781/sysydz2021061006 [15] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htmJIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm [16] 云露. 顺北地区奥陶系超深断溶体油气成藏条件[J]. 新疆石油地质, 2021, 42(2): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102002.htmYUN Lu. Hydrocarbon accumulation of ultra-deep ordovician fault-karst reservoirs in Shunbei area[J]. Xinjiang Petroleum Geology, 2021, 42(2): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102002.htm [17] 马永生, 何治亮, 赵培荣, 等. 深层—超深层碳酸盐岩储层形成机理新进展[J]. 石油学报, 2019, 40(12): 1415-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201912017.htmMA Yongsheng, HE Zhiliang, ZHAO Peirong, et al. A new progress in formation mechanism of deep and ultra-deep carbonate reservoir[J]. Acta Petrolei Sinica, 2019, 40(12): 1415-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201912017.htm [18] QIU Huabiao, DENG Shang, CAO Zicheng, et al. The evolution of the complex anticlinal belt with crosscutting strike-slip faults in the central Tarim Basin, NW China[J]. Tectonics, 2019, 38(6): 2087-2113. doi: 10.1029/2018TC005229 [19] 吕海涛, 韩俊, 张继标, 等. 塔里木盆地顺北地区超深碳酸盐岩断溶体发育特征与形成机制[J]. 石油实验地质, 2021, 43(1): 14-22. doi: 10.11781/sysydz202101014Haitao, HAN Jun, ZHANG Jibiao, et al. Development characte-ristics and formation mechanism of ultra-deep carbonate fault-dissolution body in Shunbei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2021, 43(1): 14-22. doi: 10.11781/sysydz202101014 [20] 谢润成. 川西坳陷须家河组探井地应力解释与井壁稳定性评价[D]. 成都: 成都理工大学, 2009.XIE Runcheng. Stress interpretation and wellbore stability evaluation of Xujiahe formation of exploration wells in Western Sichuan Depression[D]. Chengdu: Chengdu University of Technology, 2009. [21] 汝智星. 特低渗透油藏注水过程中天然裂缝与水力裂缝耦合作用研究[D]. 北京: 中国地质大学(北京), 2018.RU Zhixing. Study on coupling effects of natural fractures and hydraulic fractures in water injection process in ultra-low permeability reservoirs[D]. Beijing: China University of Geosciences (Beijing), 2018. [22] RICKMAN R, MULLEN M, PETRE E, et al. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett shale[C]//Proceedings of the SPE Annual Technical Conference and Exhibition. Denver: Society of Petroleum Engineers, 2008.