留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中大西洋被动陆缘盆地结构特征与勘探领域

田纳新 吴高奎 刘静静 陶崇智 高敏 王大鹏

田纳新, 吴高奎, 刘静静, 陶崇智, 高敏, 王大鹏. 中大西洋被动陆缘盆地结构特征与勘探领域[J]. 石油实验地质, 2023, 45(3): 486-496. doi: 10.11781/sysydz202303486
引用本文: 田纳新, 吴高奎, 刘静静, 陶崇智, 高敏, 王大鹏. 中大西洋被动陆缘盆地结构特征与勘探领域[J]. 石油实验地质, 2023, 45(3): 486-496. doi: 10.11781/sysydz202303486
TIAN Naxin, WU Gaokui, LIU Jingjing, TAO Chongzhi, GAO Min, WANG Dapeng. Structural characteristics and exploration fields in passive continental margin basins of Central Atlantic[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(3): 486-496. doi: 10.11781/sysydz202303486
Citation: TIAN Naxin, WU Gaokui, LIU Jingjing, TAO Chongzhi, GAO Min, WANG Dapeng. Structural characteristics and exploration fields in passive continental margin basins of Central Atlantic[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(3): 486-496. doi: 10.11781/sysydz202303486

中大西洋被动陆缘盆地结构特征与勘探领域

doi: 10.11781/sysydz202303486
基金项目: 

国家科技重大专项 2016ZX05033

中国石化科技部项目 P21043-3

基础前瞻项目 P22214-2

基础前瞻项目 P22214-1

详细信息
    作者简介:

    田纳新(1968—),男,博士,高级工程师,从事石油地质研究。E-mail: tiannx.syky@sinopec.com

    通讯作者:

    吴高奎(1989—),男,博士,副研究员,从事沉积盆地分析研究。E-mail: vvu126@126.com

  • 中图分类号: TE121.2

Structural characteristics and exploration fields in passive continental margin basins of Central Atlantic

  • 摘要: 中大西洋被动陆缘盆地油气资源丰富,而对盆地结构特征和成藏条件认识不足制约着区内深水油气勘探工作。综合分析地震、钻井和重磁异常等资料,以塞内加尔盆地和斯科舍盆地为重点解剖对象,研究了中大西洋被动陆缘盆地结构特征及其深水油气成藏条件并预测勘探领域。中大西洋被动陆缘盆地经历了断陷期、过渡期和漂移期三期演化,相应发育断陷层、坳陷层和陆缘层,基底性质和转换断层联合作用控制了被动陆缘盆地的结构。三叠纪—早侏罗世断陷期,发育垒堑结构,以河流、湖泊和三角洲等陆相沉积为主;中晚侏罗世过渡期,转换断裂活动形成边缘脊或海底隆起带,加之研究区古生界弱基底易拉伸减薄而沉降,与向陆方向高地势构成局限环境,为坳陷层烃源岩发育提供了有利条件;白垩纪漂移期,发育台缘礁、三角洲—坡底扇两类储集体。斯科舍盆地坡底扇和塞内加尔盆地台缘礁勘探前景广阔。

     

  • 图  1  中大西洋两岸盆地类型及分布

    Figure  1.  Type and distribution of basins on both sides of Central Atlantic

    图  2  中大西洋两岸典型盆地地层发育特征[9]

    Figure  2.  Stratigraphic characteristics of typical basins on both sides of Central Atlantic

    图  3  塞内加尔盆地典型地质剖面[15]

    剖面位置见图 1AA’。

    Figure  3.  Typical geological profile of Senegal Basin

    图  4  中大西洋两岸宽方位角地震解释剖面

    位置见图 1BB[17]CC[18]DD[19]EE[20]

    Figure  4.  Wide azimuth seismic interpretation profile on both sides of Central Atlantic

    图  5  中大西洋(a)及塞内加尔盆地(b)自由空气重力异常图

    资料据ICGEM。

    Figure  5.  Free air gravity anomaly map in Central Atlantic (a) and Senegal Basin (b)

    图  6  斯科舍盆地及其邻区磁异常图[9]

    剖面位置同图 4BB’。

    Figure  6.  Magnetic anomaly map of Scotia Basin and its adjacent areas

    图  7  斯科舍盆地侏罗系烃源岩与下白垩统密西沙加组砂岩储层分布预测[8]

    Figure  7.  Distribution prediction of Jurassic source rocks and Lower Cretaceous Mississauga Formation sandstone reservoirs in Scotia Basin

    图  8  塞内加尔盆地油气成藏模式

    Figure  8.  Hydrocarbon accumulation model of Senegal Basin

    图  9  斯科舍盆地油气成藏模式9]

    Figure  9.  Hydrocarbon accumulation model of Scotia Basin

    图  10  塞内加尔盆地碳酸盐岩、三角洲砂岩和浊积砂岩分布

    Figure  10.  Distribution of carbonate rocks, delta sandstones and turbidite sandstones in Senegal Basin

  • [1] BIARI Y, KLINGELHOEFER F, FRANKE D, et al. Structure and evolution of the Atlantic passive margins: a review of existing rifting models from wide-angle seismic data and kinematic reconstruction[J]. Marine and Petroleum Geology, 2021, 126: 104898. doi: 10.1016/j.marpetgeo.2021.104898
    [2] PIQUÉ A, LAVILLE E. The central Atlantic rifting: reactivation of Palaeozoic structures?[J]. Journal of Geodynamics, 1996, 21(3): 235-255. doi: 10.1016/0264-3707(95)00022-4
    [3] BIARI Y, KLINGELHOEFER F, SAHABI M, et al. Opening of the Central Atlantic Ocean: implications for geometric rifting and asymmetric initial seafloor spreading after continental breakup[J]. Tectonics, 2017, 36(6): 1129-1150. doi: 10.1002/2017TC004596
    [4] OLSEN P E. Stratigraphic record of the Early Mesozoic breakup of Pangea in the Laurasia-Gondwana rift system[J]. Annual Review of Earth and Planetary Sciences, 1997, 25: 337-401. doi: 10.1146/annurev.earth.25.1.337
    [5] DAVISON I. Central Atlantic margin basins of north west Africa: geology and hydrocarbon potential (Morocco to Guinea)[J]. Journal of African Earth Sciences, 2005, 43(1/3): 254-274. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S1464343X05001196&originContentFamily=serial&_origin=article&_ts=1495478682&md5=3f0f790288d186ae4ce44e96d86e4ef9
    [6] DENYSZYN S W, FIORENTINI M L, MAAS R, et al. A bigger tent for CAMP[J]. Geology, 2018, 46(9): 823-826. doi: 10.1130/G45050.1
    [7] BRYAN S E, ERNST R E. Revised definition of large igneous provinces (LIPs)[J]. Earth-Science Reviews, 2008, 86(1/4): 175-202. http://www.onacademic.com/detail/journal_1000035038872810_5292.html
    [8] LABAILS C, OLIVET J L, ASLANIAN D, et al. An alternative early opening scenario for the Central Atlantic Ocean[J]. Earth and Planetary Science Letters, 2010, 297(3/4): 355-368. http://www.onacademic.com/detail/journal_1000035378618210_bcc2.html
    [9] WU Gaokui, KONG Fanjun, TIAN Naxin, et al. Structural characte-ristics and deep-water hydrocarbon accumulation model of the Scotian Basin, eastern Canada[J]. Energy Geoscience, 2023, 4(3): 100152. doi: 10.1016/j.engeos.2022.100152
    [10] NEUMAIER M, BACK S, LITTKE R, et al. Late Cretaceous to Cenozoic geodynamic evolution of the Atlantic margin offshore Essaouira (Morocco)[J]. Basin Research, 2016, 28(5): 712-730. doi: 10.1111/bre.12127
    [11] DE LÉPINAY M M, LONCKE L, BASILE C, et al. Transform continental margins-part 2: a worldwide review[J]. Tectono-physics, 2016, 693: 96-115. doi: 10.1016/j.tecto.2016.05.038
    [12] 王宏语, 张峰, 杨雄兵. 塞内加尔盆地北部次盆白垩系被动大陆边缘深海扇演化特征及主控因素[J]. 地学前缘, 2021, 28(2): 362-375. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102027.htm

    WANG Hongyu, ZHANG Feng, YANG Xiongbing. Evolutionary characteristics and controlling factors of deep-sea fans in Cretaceous passive continental margin basin, northern Subbasin, Senegal Basin[J]. Earth Science Frontiers, 2021, 28(2): 362-375. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102027.htm
    [13] NDIAYE M, NGOM P M, GORIN G, et al. A new interpretation of the deep-part of Senegal-Mauritanian Basin in the Diourbel-Thies area by integrating seismic, magnetic, gravimetric and borehole data: implication for petroleum exploration[J]. Journal of African Earth Sciences, 2016, 121: 330-341. doi: 10.1016/j.jafrearsci.2016.06.002
    [14] SHIMELD J. A comparison of salt tectonic sub-provinces beneath the Scotian Slope and Laurentian Fan[M]//POST P J, OLSON D L, LYONS K T, et al. Salt sediment interactions and hydro-carbon prospectivity concepts, applications and case studies for the 21st century. [s. l. ]: SEPM Society for Sedimentary Geology, 2004: 502-532.
    [15] HADDOU J, AHMED D. New concepts in exploring subsalt Paleozoic hydrocarbon systems in mature and near producing areas of Morocco[J]. AAPG Bulletin, 1998, 82(10): 1925-1926.
    [16] ULMISHEK G F. Petroleum geology and resources of the west Siberian Basin, Russia[R]. Reston: U.S. Geological Survey, 2003: 9-20.
    [17] FUNCK T, JACKSON H R, LOUDEN K E, et al. Crustal structure of the northern Nova Scotia rifted continental margin (eastern Canada)[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B9): B09102. doi: 10.1029/2004JB003008/pdf
    [18] BIARI Y, KLINGELHOEFER F, SAHABI M, et al. Deep crustal structure of the north-west African margin from combined wide-angle and reflection seismic data (MIRROR seismic survey)[J]. Tectonophysics, 2015, 656: 154-174. doi: 10.1016/j.tecto.2015.06.019
    [19] DIEBOLD J B, STOFFA P L. A large aperture seismic experiment in the Baltimore Canyon Trough[M]//SHERIDAN R E, GROW J A. The Atlantic continental margin. [s. l. ]: Geological Society of America, 1988: 1-2.
    [20] KLINGELHOEFER F, LABAILS C, COSQUER E, et al. Crustal structure of the SW-Moroccan margin from wide-angle and reflection seismic data (the DAKHLA experiment) part A: wide-angle seismic models[J]. Tectonophysics, 2009, 468(1/4): 63-82. http://www.sciencedirect.com/science/article/pii/S004019510800348X
    [21] BENKHELIL J, MASCLE J, TRICART P. The Guinea continental margin: an example of a structurally complex transform margin[J]. Tectonophysics, 1995, 248(1/2): 117-137. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-0040195194002466&originContentFamily=serial&_origin=article&_ts=1483832296&md5=e16a15d83237d6f53b83d76a29cce7c0
    [22] SILVA R L, WONG C, WACH G. Source rocks and petroleum systems of the Scotian Basin[J]. Recorder, 2015, 40(8): 22-27.
    [23] SANGSTER C, PIPER D J W, HAWIE N, et al. Forward stratigraphic modelling of sediment pathways and depocentres in salt-influenced passive-margin basins: Lower Cretaceous, central Scotian Basin[J]. Basin Research, 2019, 31(4): 728-753. doi: 10.1111/bre.12342
    [24] DEPTUCK M E, KENDELL K, BROWN D E, et al. Seismic stratigraphic framework and structural evolution of the eastern Scotian Slope: geological context for the NS14-1 Call for Bids area, offshore Nova Scotia[R]. Halifax: Canada-Nova Scotia Offshore Petroleum Board, 2014: 1-58.
    [25] 孙涛, 王建新, 孙玉梅. 西非塞内加尔盆地深水区油气地球化学特征与油气成藏[J]. 沉积学报, 2017, 35(6): 1284-1292. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201706020.htm

    SUN Tao, WANG Jianxin, SUN Yumei. Petroleum geochemical characteristics and accumulation in offshore of Senegal Basin[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1284-1292. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201706020.htm
    [26] MUKHOPADHYAY P K, WADE J A, KRUGE M A. Organic facies and maturation of Jurassic/Cretaceous rocks, and possible oil-source rock correlation based on pyrolysis of asphaltenes, Scotian Basin, Canada[J]. Organic Geochemistry, 1995, 22(1): 85-104. http://www.sciencedirect.com/science/article/pii/0146638095900101
    [27] PanCanadian Energy Corporation. Deep panuke offshore gas deve-lopment development plan[R]. [s. l. ]: PanCanadian Energy Corporation, 2002, 2: 145.
    [28] MOSCARDELLI L, OCHOA J, HUNT I, et al. Mixed siliciclastic-carbonate systems and their impact for the development of deep-water turbidites in continental margins: a case study from the Late Jurassic to Early Cretaceous Shelburne Subbasin in offshore Nova Scotia[J]. AAPG Bulletin, 2019, 103(10): 2487-2520. http://www.nstl.gov.cn/paper_detail.html?id=cac51c69ebf2e263fd2e0abf3672dc2b
    [29] 吴高奎, 张忠民, 陈华, 等. 下刚果盆地中新统重力流沉积演化及控制因素[J]. 沉积学报, 2023, 41(1): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202301005.htm

    WU Gaokui, ZHANG Zhongmin, CHEN Hua, et al. Sedimentary evolution and controlling factors of Miocene gravity flow deposits in the Lower Congo Basin[J]. Acta Sedimentologica Sinica, 2023, 41(1): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202301005.htm
    [30] 陈华, 林畅松, 张忠民, 等. 西非下刚果—刚果扇盆地A区块中新统深水水道体系沉积特征及演化[J]. 石油实验地质, 2021, 43(3): 476-486. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202103013.htm

    CHEN Hua, LIN Changsong, ZHANG Zhongmin, et al. Depositional characteristics and evolution of Miocene deep-water channel systems in block A of Lower Congo-Congo Fan Basin, west Africa[J]. Petroleum Geology & Experiment, 2021, 43(3): 476-486. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202103013.htm
  • 加载中
图(10)
计量
  • 文章访问数:  560
  • HTML全文浏览量:  413
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-19
  • 修回日期:  2023-04-11
  • 刊出日期:  2023-05-28

目录

    /

    返回文章
    返回