留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甾烷类化合物分子印迹聚合物功能单体的筛选及MIPs制备

马荣 原陇苗 刘艳红 王之语 吴应琴

马荣, 原陇苗, 刘艳红, 王之语, 吴应琴. 甾烷类化合物分子印迹聚合物功能单体的筛选及MIPs制备[J]. 石油实验地质, 2023, 45(3): 537-548. doi: 10.11781/sysydz202303537
引用本文: 马荣, 原陇苗, 刘艳红, 王之语, 吴应琴. 甾烷类化合物分子印迹聚合物功能单体的筛选及MIPs制备[J]. 石油实验地质, 2023, 45(3): 537-548. doi: 10.11781/sysydz202303537
MA Rong, YUAN Longmiao, LIU Yanhong, WANG Zhiyu, WU Yingqin. Screening of functional monomers and preparation of molecularly imprinted polymers (MIPs) in molecularly imprinted polymers of steranes[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(3): 537-548. doi: 10.11781/sysydz202303537
Citation: MA Rong, YUAN Longmiao, LIU Yanhong, WANG Zhiyu, WU Yingqin. Screening of functional monomers and preparation of molecularly imprinted polymers (MIPs) in molecularly imprinted polymers of steranes[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(3): 537-548. doi: 10.11781/sysydz202303537

甾烷类化合物分子印迹聚合物功能单体的筛选及MIPs制备

doi: 10.11781/sysydz202303537
基金项目: 

国家自然科学基金 42072180

国家自然科学基金 41772147

国家自然科学基金 41272147

详细信息
    作者简介:

    马荣(1996—),女,硕士生,主要研究方向为油气地球化学。E-mail: marong202@mails.ucas.ac.cn

    通讯作者:

    吴应琴(1971-), 女, 教授级高级工程师, 博士生导师, 从事油气地球化学、环境地球化学究。E-mail: yingqinwu@lzb.ac.cn

  • 中图分类号: TE135

Screening of functional monomers and preparation of molecularly imprinted polymers (MIPs) in molecularly imprinted polymers of steranes

  • 摘要: 为了制备对甾烷类化合物具有特异性选择能力的分子印迹聚合物(MIPs),利用紫外光谱法对预聚合体系进行筛选,确定功能单体的种类、配比及其作用方式。将3种模板分子(胆固醇、β-谷固醇、去氧胆酸)分别与4种功能单体,即丙烯酸(AA)、甲基丙烯酸(MAA)、甲基丙烯酸甲酯(MMA)、丙烯酰胺(AM))的相互作用强度进行对比。研究结果发现,功能单体AA均可与3种模板分子发生较强的相互作用并形成稳定的预聚合体系,从而优选出AA为MIPs的功能单体。另外,通过不同比例AA紫外光谱吸光度变化和差示紫外光谱分析,显示3种模板分子与功能单体AA的最佳浓度比均为1∶4,且形成的稳定配合物构型分别为胆固醇-1AA、β-谷固醇-1AA及去氧胆酸-3AA。同时,以EDGMA为交联剂、AIBN为引发剂,采用沉淀聚合法成功合成了MIPs,傅立叶变换红外光谱(FTIR)分析结果显示MIPs制备良好。因此,此方法可用于对甾烷类化合物具有特异性选择能力的MIPs功能单体的筛选及其制备,并为深层—超深层烃源岩油源对比研究提供技术支持。

     

  • 图  1  模板与功能单体的化学结构

    Figure  1.  Chemical structure of template molecules and functional monomers

    图  2  胆固醇、不同功能单体及其混合溶液的紫外吸收光谱

    Figure  2.  UV absorption spectra of cholesterol, different functional monomers and their mixed solutions

    图  3  β-谷固醇、不同功能单体及其混合溶液的紫外吸收光谱

    Figure  3.  UV absorption spectra of β-sitosterol, different functional monomers and their mixed solutions

    图  4  去氧胆酸、不同功能单体及其混合溶液的紫外吸收光谱

    Figure  4.  UV absorption spectra of deoxycholic acid, different functional monomers and their mixed solutions

    图  5  胆固醇与不同比例丙烯酸混合溶液的紫外吸收光谱

    a.浓度为1∶0~1∶8的紫外光谱图;b.浓度比为1∶0~1∶8混合溶液的最大吸收波长与相对应吸光值的变化曲线

    Figure  5.  UV absorption spectra of mixed solutions of cholesterol and acrylic acid in different proportions

    图  6  β-谷固醇与不同比例丙烯酸混合溶液的紫外吸收光谱

    a.浓度比为1∶0~1∶8的紫外光谱检测;b.浓度比1∶0~1∶8混合溶液的最大吸收波长与相对应吸光值的变化曲线

    Figure  6.  UV absorption spectra of mixed solutions of β-sitosterol and acrylic acid in different proportions

    图  7  去氧胆酸与不同比例丙烯酸混合溶液的紫外光谱图

    a.浓度比为1∶1~1∶8的紫外光谱检测;b.浓度比1∶0~1∶8混合溶液的最大吸收波长与相对应吸光值的变化曲线

    Figure  7.  UV absorption spectra of mixed solutions of deoxycholic acid and acrylic acid in different proportions

    图  8  胆固醇预组装差示紫外光谱图

    a.浓度比为1∶1~1∶8的差示紫外光谱;b.浓度比为1∶2,1∶4,1∶6,1∶8时ΔΑΔΑ/bmn的线性关系

    Figure  8.  Differential UV spectra of cholesterol preassembly

    图  9  β-谷固醇预组装差示紫外光谱图

    a.浓度比为1∶1~1∶8的差示紫外光谱图;b.浓度比为1∶2、1∶4、1∶6、1∶8时ΔΑΔΑ/bmn的线性关系图

    Figure  9.  Differential UV spectra of β-sitosterol preassembly

    图  10  去氧胆酸预组装差示紫外光谱图

    a.浓度比为1∶1~1∶8的差示紫外光谱图;b.浓度比为1∶2、1∶4、1∶6、1∶8时ΔΑΔΑ/bmn的线性关系图

    Figure  10.  Differential UV spectra of deoxycholic acid preassembly

    图  11  模板分子与丙烯酸(AA)的结合示意

    Figure  11.  Schematic diagram of binding of template molecules to acrylic acid (AA)

    图  12  MIPs、NIP、去氧胆酸和AA红外吸收光谱

    Figure  12.  Infrared absorption spectra of MIPs, NIP, deoxycholic acid and AA

    图  13  AA与EDGMA的聚合反应方程式

    Figure  13.  Equation of polymerization reaction of AA and EDGMA

    图  14  去氧胆酸虚拟分子印迹聚合物的合成示意

    Figure  14.  Synthesis of virtual molecularly imprinted polymers of deoxycholic acid

    图  15  不同温度聚合物微球的扫描电镜图

    Figure  15.  SEM images of polymer microspheres at different temperatures

    表  1  制备分子印迹聚合物(MIPs)相关实验的主要试剂

    Table  1.   Main reagents used in related experiments for preparing MIPs

    试剂名称 试剂级别 生产厂家
    胆固醇 AR 天津市大茂化学试剂厂
    β-谷固醇 AR 合肥巴斯夫生物科技有限公司
    去氧胆酸 AR 麦克林生物科技有限公司
    AA AR 天津市大茂化学试剂厂
    MAA AR 天津市大茂化学试剂厂
    MMA AR 天津市大茂化学试剂厂
    AM AR 上海广诺化学科技有限公司
    EDGMA AR 北京百灵威科技有限公司
    AIBN AR 天津市大茂化学试剂厂
    甲醇 HPLC 北京迈瑞达科技有限公司
    乙腈 HPLC 北京迈瑞达科技有限公司
    下载: 导出CSV

    表  2  制备MIPs相关实验的主要仪器设备

    Table  2.   Main instruments and equipments used in related experiments for preparing MIPs

    实验仪器 型号 生产厂家
    紫外可见光度计 UV-2600 谱质分析检测技术(上海)有限公司
    傅立叶红外光谱仪 Bruker Alpha 泰科施普(北京)技术有限公司
    电子恒温不锈钢水浴锅 HHS-2S 上海虞龙仪器设备有限公司
    场发射扫描电子显微镜 Merlin Compact 德国蔡司
    气相色谱/质谱联用仪 6890N(GC)/5737N(MS) 美国安捷伦科技有限公司
    回旋式振荡器 HY-5 江苏盛兰仪器制造有限公司
    下载: 导出CSV

    表  3  制备MIP和NIP的组分材料及含量

    Table  3.   Components and contents for preparing MIP and NIP

    聚合物 模板分子类型 模板分子/mmol 功能单体/mmol 交联剂(EDGMA)/mmol 引发剂(AIBN)/mg 致孔剂(乙腈)/mL 温度/℃ 吸附量/(mg·g-1) 印迹因子 分配常数/(g·mL-1)
    MIP1 胆固醇 0.5 2 10 160.5 60 60 0.670 2.778 0.183
    MIP2 β-谷固醇 0.5 2 10 160.5 60 60 0.779 3.231 0.226
    MIP3 去氧胆酸 0.5 2 10 160.5 60 60 0.877 3.638 0.270
    MIP4 去氧胆酸 0.5 2 10 160.5 60 50 0.418
    MIP5 去氧胆酸 0.5 2 10 160.5 60 70 0.695
    NIP 2 10 160.5 60 60 0.241 0.053
    下载: 导出CSV

    表  4  模板分子与功能单体的最大理论吸光度与实际吸光度差值

    Table  4.   Difference between the maximum theoretical absorbance and the actual absorbance of template molecules and functional monomers

    模板分子 功能单体
    AA MAA MMA AM
    胆固醇 1.063 08 0.847 14 0.861 46 0.718 72
    β-谷固醇 0.908 60 0.668 06 0.621 24 0.368 06
    去氧胆酸 0.298 62 0.133 27 0.095 51 0.060 29
    下载: 导出CSV
  • [1] SHIRNESHAN G, BAKHTIARI A R, MEMARIANI M. Distribution and origins of n-alkanes, hopanes, and steranes in rivers and marine sediments from southwest Caspian coast, Iran: implications for identifying petroleum hydrocarbon inputs[J]. Environmental Science and Pollution Research, 2016, 23(17): 17484-17495. doi: 10.1007/s11356-016-6825-8
    [2] LIU Shiju, GAO Gang, JIN Jun, et al. Source rock with high abundance of C28 regular sterane in typical brackish-saline lacustrine sediments: biogenic source, depositional environment and hydrocarbon generation potential in Junggar Basin, China[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109670. doi: 10.1016/j.petrol.2021.109670
    [3] 万涛, 张洪安, 张宝君, 等. C29重排谷甾烷在油源对比研究中的应用: 以银额盆地查干凹陷为例[J]. 断块油气田, 2021, 28(2): 173-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102007.htm

    WAN Tao, ZHANG Hongan, ZHANG Baojun, et al. The application of C29 rearranged sitostane in oil source correlation research: taking Chagan Depression of Yingen-Ejinaqi Basin for example[J]. Fault-Block Oil and Gas Field, 2021, 28(2): 173-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102007.htm
    [4] KASHIRTSEV V A, DOLZHENKO K V, FOMIN A N, et al. Hydrocarbon composition of bitumen from deeply buried terrestrial organic matter (zone of apocatagenesis)[J]. Russian Geology and Geophysics, 2017, 58(6): 702-710. doi: 10.1016/j.rgg.2016.03.018
    [5] MEN Jiying, DONG Chengya, SHI Hongxing, et al. Surface molecular imprinted membranes as a "gate" for selective transdermal release of chiral drug amlodipine[J]. Journal of Membrane Science, 2022, 664: 121059. doi: 10.1016/j.memsci.2022.121059
    [6] LI Aimin, HUANG Xiaolan, YAN Ling, et al. Pseudo-template molecularly imprinted polymeric fiber solid-phase microextraction coupled to gas chromatography for ultrasensitive determination of 2, 4, 6-trihalophenol disinfection by-products[J]. Journal of Chromatography A, 2022, 1678: 463322. doi: 10.1016/j.chroma.2022.463322
    [7] RAMANAVICIUS S, SAMUKAITE-BUBNIENE U, RATAUTAITE V, et al. Electrochemical molecularly imprinted polymer based sensors for pharmaceutical and biomedical applications (review)[J]. Journal of Pharmaceutical and Biomedical Analysis, 2022, 215: 114739. doi: 10.1016/j.jpba.2022.114739
    [8] WANG Xingguo, LIU Zhixiang, LU Jian, et al. Highly selective membrane for efficient separation of environmental determinands: enhanced molecular imprinting in polydopamine-embedded porous sleeve[J]. Chemical Engineering Journal, 2022, 449: 137825. doi: 10.1016/j.cej.2022.137825
    [9] WANG Xuemei, HUANG Pengfei, MA Xiaomin, et al. Enhanced in-out-tube solid-phase microextraction by molecularly imprinted polymers-coated capillary followed by HPLC for Endocrine Disrupting Chemicals analysis[J]. Talanta, 2019, 194: 7-13. doi: 10.1016/j.talanta.2018.10.027
    [10] YUAN Ya, WANG Yuzhi, HUANG Meidong, et al. Development and characterization of molecularly imprinted polymers for the selective enrichment of podophyllotoxin from traditional Chinese medicines[J]. Analytica Chimica Acta, 2011, 695(1/2): 63-72. http://www.sciencedirect.com/science/article/pii/S0003267011005290
    [11] KARIM K, BRETON F, ROUILLON R, et al. How to find effective functional monomers for effective molecularly imprinted polymers?[J]. Advanced Drug Delivery Reviews, 2005, 57(12): 1795-1808. doi: 10.1016/j.addr.2005.07.013
    [12] 银珍红, 陈小明. 2, 4-二氯苯氧乙酸分子印迹整体柱的制备、表征及色谱性能研究[J]. 分析测试学报, 2009, 28(8): 949-953. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST200908018.htm

    YING Zhenhong, CHEN Xiaoming. Synthesis and characterization of 2, 4-dichlorophenoxyacetic acid molecularly imprinted monolithic column and its chromatographic property[J]. Journal of Instrumental Analysis, 2009, 28(8): 949-953. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST200908018.htm
    [13] MA Xingbin, LIN Hongling, ZHANG Jiyu, et al. Preparation and characterization of dummy molecularly imprinted polymers for separation and determination of farrerol from Rhododendronaganniphum using HPLC[J]. Green Chemistry Letters and Reviews, 2018, 11(4): 513-522. doi: 10.1080/17518253.2018.1541481
    [14] 李璐, 周刘梅, 解新安, 等. 溴氰菊酯农药残留检测的分子印迹预聚体系筛选及吸附性能[J]. 农业工程学报, 2019, 35(1): 269-277. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201901034.htm

    LI Lu, ZHOU Liumei, XIE Xinan, et al. Screening of molecularly imprinted pre-assembly system for detection of deltamethrin pesticide residues and its specific adsorption properties[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(1): 269-277. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201901034.htm
    [15] WANG Liping, SHE Xuhui, CHEN Zhi, et al. Preparation and characterization of a chiral molecularly imprinted polymer with a novel functional monomer for controlled release of S-sulpiride[J]. International Journal of Pharmaceutics, 2021, 601: 120526. doi: 10.1016/j.ijpharm.2021.120526
    [16] 高博, 杨宏伟, 宋文琦, 等. 分子模拟辅助设计L-苯丙氨酸分子印迹聚合物及其性能研究[J]. 化学通报, 2019, 82(3): 251-257. https://www.cnki.com.cn/Article/CJFDTOTAL-HXTB201903010.htm

    GAO Bo, YANG Hongwei, SONG Wenqi, et al. Molecular simulation-aided design of L-phenylalanine-imprinted polymers and its properties[J]. Chemistry, 2019, 82(3): 251-257. https://www.cnki.com.cn/Article/CJFDTOTAL-HXTB201903010.htm
    [17] SÁNCHEZ-GONZÁLEZ J, PEÑA-GALLEGO Á, SANMARTÍN J, et al. NMR spectroscopy for assessing cocaine-functional monomer interactions when preparing molecularly imprinted polymers[J]. Microchemical Journal, 2019, 147: 813-817. doi: 10.1016/j.microc.2019.03.088
    [18] 杨俊, 朱晓兰, 苏庆德, 等. 可天宁印迹聚合物分子识别特性的光谱与XPS研究[J]. 光谱学与光谱分析, 2007, 27(6): 1152-1155. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200706031.htm

    YANG Jun, ZHU Xiaolan, SU Qingde, et al. Spectroscopy and XPS studies on molecular recognition of a molecularly imprinted cotinine-specific polymer[J]. Spectroscopy and Spectral Analysis, 2007, 27(6): 1152-1155. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200706031.htm
    [19] WADIE M, ABDEL-MOETY EM, REZK M R, et al. Electro-polymerized poly-methyldopa as a novel synthetic mussel-inspired molecularly imprinted polymeric sensor for darifenacin: computational and experimental study[J]. Applied Materials Today, 2022, 29: 101595. doi: 10.1016/j.apmt.2022.101595
    [20] GARCIA L L C, FIGUEIREDO-FILHO L C S, OLIVEIRA G G, et al. Square-wave voltammetric determination of paraquat using a glassy carbon electrode modified with multiwalled carbon nanotubes within a dihexadecyl hydrogen phosphate (DHP) film[J]. Sensors and Actuators B: Chemical, 2013, 181: 306-311. doi: 10.1016/j.snb.2013.01.091
    [21] 林秋明, 何建峰, 刘岚, 等. 不同功能单体合成的分子印迹聚合物识别性能的研究[J]. 化学研究与应用, 2007, 19(10): 1084-1088. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYJ200710005.htm

    LIN Qiuming, HE Jianfeng, LIU Lan, et al. Study on the effect of recognized characteristics of quercetin imprinted polymers with different functional monomers[J]. Chemical Research and Application, 2007, 19(10): 1084-1088. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYJ200710005.htm
    [22] 朱淮武. 有机分子结构波谱解析[M]. 北京: 化学工业出版社, 2005.

    ZHU Huaiwu. Organic molecular structure spectra analysis[M]. Beijing: Chemical Industry Press, 2005.
    [23] 张晓. 番红花红T分子印迹聚合物的制备及其性能研究[D]. 兰州: 兰州交通大学, 2021.

    ZHANG Xiao. Preparation and properties of safranin T molecular imprinted polymer[D]. Lanzhou: Lanzhou Jiaotong University, 2021.
    [24] 刘婷婷, 卢春霞. 齐墩果酸分子印迹体系优化[J]. 江苏农业科学, 2021, 49(2): 139-145. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY202102025.htm

    LIU Tingting, LU Chunxia. Optimization of molecularly imprinted system for oleanolic acid[J]. Jiangsu Agricultural Sciences, 2021, 49(2): 139-145. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY202102025.htm
    [25] 张孝刚, 朱秋劲, 胡萍. 三聚氰胺分子印迹预组装体系紫外光谱研究[J]. 食品科学, 2011, 32(21): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201121025.htm

    ZHANG Xiaogang, ZHU Qiujin, HU Ping. Ultraviolet spectroscopic investigations into melamine molecular imprinting pre-assembly system[J]. Food Science, 2011, 32(21): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201121025.htm
    [26] CHEN Changbao, CHEN Yanjun, ZHOU Jie, et al. A 9-vinyladenine-based molecularly imprinted polymeric membrane for the efficient recognition of plant hormone 1H-indole-3-acetic acid[J]. Analytica Chimica Acta, 2006, 569(1/2): 58-65. http://www.sciencedirect.com/science/article/pii/S0003267006006362
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  453
  • HTML全文浏览量:  316
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 修回日期:  2023-03-30
  • 刊出日期:  2023-05-28

目录

    /

    返回文章
    返回