留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烟道气驱替石英狭缝孔中页岩气的分子模拟

钱英强 杨雪 刘晓强 李美俊 陈泽琴 薛英

钱英强, 杨雪, 刘晓强, 李美俊, 陈泽琴, 薛英. 烟道气驱替石英狭缝孔中页岩气的分子模拟[J]. 石油实验地质, 2023, 45(3): 560-565. doi: 10.11781/sysydz202303560
引用本文: 钱英强, 杨雪, 刘晓强, 李美俊, 陈泽琴, 薛英. 烟道气驱替石英狭缝孔中页岩气的分子模拟[J]. 石油实验地质, 2023, 45(3): 560-565. doi: 10.11781/sysydz202303560
QIAN Yingqiang, YANG Xue, LIU Xiaoqiang, LI Meijun, CHEN Zeqin, XUE Ying. Molecular simulation of the displacement of shale gas in quartz slit by flue gas[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(3): 560-565. doi: 10.11781/sysydz202303560
Citation: QIAN Yingqiang, YANG Xue, LIU Xiaoqiang, LI Meijun, CHEN Zeqin, XUE Ying. Molecular simulation of the displacement of shale gas in quartz slit by flue gas[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(3): 560-565. doi: 10.11781/sysydz202303560

烟道气驱替石英狭缝孔中页岩气的分子模拟

doi: 10.11781/sysydz202303560
基金项目: 

四川省科技计划项目 2020YJ0342

四川省自然科学基金 2022NSFSC0182

详细信息
    作者简介:

    钱英强(1998—),男,硕士生,从事非常规及复杂油气藏分子模拟。E-mail: yqqian@petalmail.com

    通讯作者:

    陈泽琴(1976—),女,博士,教授,从事非常规及复杂油气藏分子模拟。E-mail: chenzeqin19@cdut.edu.cn

  • 中图分类号: TE357.7

Molecular simulation of the displacement of shale gas in quartz slit by flue gas

  • 摘要: 为了探究石英狭缝孔中烟道气封存联合页岩气采收技术的效率,采用巨正则蒙特卡洛(GCMC)和分子动力学(MD)模拟探讨了地质埋深、地层水含量和烟道气注入比例对烟道气(CO2/N2)驱替石英狭缝孔中页岩气(CH4)效率的影响。通过系统分析各组分的密度分布、负载量、吸附热和相互作用能,确定了各组分的吸附机理和CH4的采收率。混合组分中CH4和N2的负载量(ΓCH4ΓN2)与地层水含量呈负相关。随着地质埋深的增大,ΓCH4ΓN2迅速增大,在埋深达到2 400 m后趋于平缓。CO2的负载量(ΓCO2)在埋深2 400 m出现最大值;在埋深小于2 400 m时,ΓCO2与地层水含量呈正相关;埋深大于2 400 m后,ΓCO2与地层水含量呈负相关。CH4的采收率在埋深400~600 m处出现最大值,并随烟道气中CO2摩尔分数的增大而增大,表明烟道气中的CO2对CH4有较强的驱替能力。

     

  • 图  1  石英狭缝中混合组分CH4、CO2和N2的密度随地质埋深(a)和CO2的摩尔分数(b)变化规律

    Figure  1.  Density distributions of mixed CH4, CO2 and N2 in quartz slit varying with burial depth (a) and mole fraction of CO2 (b)

    图  2  石英狭缝中混合组分CH4(a)、CO2 (b)和N2 (c)的负载量随地质埋深、地层水含量和烟道气注入比例的变化规律

    Figure  2.  Loadings of mixed CH4 (a), CO2 (b) and N2 (c) in quartz slit varying with burial depth, formation water content and injected flue gas ratio

    图  3  石英狭缝中混合组分CH4、CO2和N2的吸附热(Qst)随地质埋深和地层水含量的变化规律

    Figure  3.  Adsorption heats (Qst) of mixed CH4, CO2 and N2 in quartz slit varying with burial depth and formation water content

    图  4  石英狭缝中混合组分CH4、CO2和N2与孔壁的相互作用能(E)随地质埋深的变化规律

    Figure  4.  Interaction energies (E) of mixed CH4, CO2 and N2 in quartz slit with wall varying with burial depth

    图  5  CH4的采收率(η)随CO2的摩尔分数(a)和地层水含量(b)的变化规律

    Figure  5.  Recovery efficiencies (η) of CH4 varying with CO2 mole fraction (a) and formation water content (b)

    表  1  渤海湾盆地东北海区不同地质埋深(Bd)对应的温度(T)和压力(P)[21]

    Table  1.   Temperatures and pressures at different burial depths in the northeast sea area of Bohai Bay Basin

    Bd/m T/K P/MPa Bd/m T/K P/MPa Bd/m T/K P/MPa
    200 297.75 2.00 2 200 349.75 22.00 4 200 393.99 42.00
    400 306.55 4.00 2 400 352.95 24.00 4 400 398.15 44.00
    600 314.55 6.00 2 600 357.83 26.00 4 600 402.23 46.00
    800 321.75 8.00 2 800 362.63 28.00 4 800 406.23 48.00
    1 000 328.15 10.00 3 000 367.35 30.00 5 000 410.15 50.00
    1 200 333.75 12.00 3 200 371.99 32.00 5 200 415.03 52.00
    1 400 338.55 14.00 3 400 376.55 34.00 5 400 419.37 54.00
    1 600 342.55 16.00 3 600 381.03 36.00 5 600 424.23 56.00
    1 800 345.75 18.00 3 800 385.43 38.00 5 800 428.51 58.00
    2 000 348.15 20.00 4 000 389.75 40.00 6 000 433.35 60.00
    下载: 导出CSV
  • [1] 王祥, 刘玉华, 张敏, 等. 页岩气形成条件及成藏影响因素研究[J]. 天然气地球科学, 2010, 21(2): 350-356. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201002028.htm

    WANG Xiang, LIU Yuhua, ZHANG Min, et al. Conditions of formation and accumulation for shale gas[J]. Natural Gas Geoscience, 2010, 21(2): 350-356. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201002028.htm
    [2] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2): 166-178. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602003.htm

    ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: characteristics, challenges and prospects (Ⅱ)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602003.htm
    [3] 兰叶芳, 吴海枝, 任传建, 等. 黔西北燕子口地区五峰组—龙马溪组泥页岩储层特征[J]. 油气地质与采收率, 2021, 28(1): 115-124. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202101015.htm

    LAN Yefang, WU Haizhi, REN Chuanjian, et al. Shale reservoir characteristics of Wufeng-Longmaxi Formation in Yanzikou area, northwestern Guizhou[J]. . Petroleum Geology and Recovery Efficiency, 2021, 28(1): 115-124. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202101015.htm
    [4] 姜涛, 金之钧, 刘光祥, 等. 四川盆地元坝地区自流井组页岩储层孔隙结构特征[J]. 石油与天然气地质, 2021, 42(4): 909-918. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202104013.htm

    JIANG Tao, JIN Zhijun, LIU Guangxiang, et al. Pore structure characteristics of shale reservoirs in the Ziliujing Formation in Yuanba area, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 909-918. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202104013.htm
    [5] 唐相路, 姜振学, 邵泽宇, 等. 第四系弱成岩泥页岩孔隙结构及物性特征[J]. 石油实验地质, 2022, 44(2): 210-218. doi: 10.11781/sysydz202202210

    TANG Xianglu, JIANG Zhenxue, SHAO Zeyu, et al. Pore structure and physical properties of Quaternary weak diagenetic shales[J]. Petroleum Geology & Experiment, 2022, 44(2): 210-218. doi: 10.11781/sysydz202202210
    [6] 付小平, 杨滔. 川东北地区下侏罗统自流井组陆相页岩储层孔隙结构特征[J]. 石油实验地质, 2021, 43(4): 589-598. doi: 10.11781/sysydz202104589

    FU Xiaoping, YANG Tao. Pore structure of continental shale reservoirs in Lower Jurassic Ziliujing Formation, northeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(4): 589-598. doi: 10.11781/sysydz202104589
    [7] 孙川翔, 聂海宽, 刘光祥, 等. 石英矿物类型及其对页岩气富集开采的控制: 以四川盆地及其周缘五峰组—龙马溪组为例[J]. 地球科学, 2019, 44(11): 3692-3704. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911009.htm

    SUN Chuanxiang, NIE Haikuan, LIU Guangxiang, et al. Quartz type and its control on shale gas enrichment and production: a case study of the Wufeng-Longmaxi formations in the Sichuan Basin and its surrounding areas, China[J]. Earth Science, 2019, 44(11): 3692-3704. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911009.htm
    [8] MIDDLETON R S, CAREY J W, CURRIER R P, et al. Shale gas and non-aqueous fracturing fluids: opportunities and challenges for supercritical CO2[J]. Applied Energy, 2015, 147: 500-509. http://www.ingentaconnect.com/content/el/03062619/2015/00000147/00000001/art00043
    [9] JING Yu, WEI Li, WANG Yundong, et al. Molecular simulation of MCM-41: structural properties and adsorption of CO2, N2 and flue gas[J]. Chemical Engineering Journal, 2013, 220: 264-275. http://www.researchgate.net/profile/Yu_Jing8/publication/257566811_Molecular_simulation_of_MCM-41_Structural_properties_and_adsorption_of_CO2_N2_and_flue_gas/links/546c46ca0cf20dedafd541ea
    [10] LIANG Lixi, LUO Danxu, LIU Xiangjun, et al. Experimental study on the wettability and adsorption characteristics of Longmaxi Formation shale in the Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 1107-1118. http://www.onacademic.com/detail/journal_1000038901674410_df8c.html
    [11] JI Liming, ZHANG Tongwei, MILLIKEN K L, et al. Experimental investigation of main controls to methane adsorption in clay-rich rocks[J]. Applied Geochemistry, 2012, 27(12): 2533-2545. http://www.sciencedirect.com/science/article/pii/S088329271200251X
    [12] CHEN Lei, JIANG Zhenxue, JIANG Shu, et al. Effect of pre-adsorbed water on methane adsorption capacity in shale-gas systems[J]. Frontiers in Earth Science, 2021, 9: 757705. http://ui.adsabs.harvard.edu/abs/2021FrEaS...9..958C/abstract
    [13] TABRIZY V A, HAMOUDA A A, SOUBEYRAND-LENOIR E, et al. CO2 adsorption isotherm on modified calcite, quartz, and kaolinite surfaces: surface energy analysis[J]. Petroleum Science and Technology, 2013, 31(15): 1532-1543. doi: 10.1080/10916466.2011.586962
    [14] SUN Haoyang, SUN Wenchao, ZHAO Hui, et al. Adsorption properties of CH4 and CO2 in quartz nanopores studied by molecular simulation[J]. RSC Advances, 2016, 6(39): 32770-32778. http://www.onacademic.com/detail/journal_1000038733575210_57a3.html
    [15] XIONG Jian, LIU Kai, LIU Xiangjun, et al. Molecular simulation of methane adsorption in slit-like quartz pores[J]. RSC Advances, 2016, 6(112): 110808-110819. http://pubs.rsc.org/en/content/articlepdf/2016/ra/c6ra22803h
    [16] YUE Fen, CHEN Zeqin, LIU Xiaoqiang, et al. CO2 mineralization and CH4 effective recovery in orthoclase slit by molecular simulation[J]. Chemical Engineering Journal, 2022, 430: 133056. http://www.sciencedirect.com/science/article/pii/S1385894721046325
    [17] CARCHINI G, HUSSEIN I, AL-MARRI M J, et al. A theoretical study of gas adsorption on α-quartz (001) for CO2 enhanced natural gas recovery[J]. Applied Surface Science, 2020, 525: 146472.
    [18] PAN Lei, XIAO Xianming, TIAN Hui, et al. Geological models of gas in place of the Longmaxi shale in southeast Chongqing, South China[J]. Marine and Petroleum Geology, 2016, 73: 433-444. http://210.77.95.253:8080/bitstream/344008/33457/1/16166.pdf
    [19] 方镕慧, 刘晓强, 张聪, 等. 温度压力耦合作用下的页岩气吸附分子模拟: 以鄂西地区下寒武统为例[J]. 天然气地球科学, 2022, 33(1): 138-152. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202201012.htm

    FANG Ronghui, LIU Xiaoqiang, ZHANG Cong, et al. Molecular simulation of shale gas adsorption under temperature and pressure coupling: case study of the Lower Cambrian in western Hubei Province[J]. Natural Gas Geoscience, 2022, 33(1): 138-152. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202201012.htm
    [20] YANG Xue, CHEN Zeqin, LIU Xiaoqiang, et al. Correction of gas adsorption capacity in quartz nanoslit and its application in recovering shale gas resources by CO2 injection: a molecular simulation[J]. Energy, 2022, 240: 122789.
    [21] QIU Nansheng, ZUO Yinhui, ZHOU Xinhuai, et al. Geothermal regime of the Bohai offshore area, Bohai Bay Basin, North China[J]. Energy Exploration & Exploitation, 2010, 28(5): 327-350.
    [22] WU Siyuan, JIN Zhixin, DENG Cunbao. Molecular simulation of coal-fired plant flue gas competitive adsorption and diffusion on coal[J]. Fuel, 2019, 239: 87-96. http://www.sciencedirect.com/science/article/pii/S0016236118318945
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  389
  • HTML全文浏览量:  140
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-29
  • 修回日期:  2023-04-02
  • 刊出日期:  2023-05-28

目录

    /

    返回文章
    返回