留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于氮气吸附实验与分形FHH模型分析页岩孔隙结构特征——以鄂尔多斯盆地华池地区长7段为例

安成 柳广弟 孙明亮 游富粮 王子昕 曹玉顺

安成, 柳广弟, 孙明亮, 游富粮, 王子昕, 曹玉顺. 基于氮气吸附实验与分形FHH模型分析页岩孔隙结构特征——以鄂尔多斯盆地华池地区长7段为例[J]. 石油实验地质, 2023, 45(3): 576-586. doi: 10.11781/sysydz202303576
引用本文: 安成, 柳广弟, 孙明亮, 游富粮, 王子昕, 曹玉顺. 基于氮气吸附实验与分形FHH模型分析页岩孔隙结构特征——以鄂尔多斯盆地华池地区长7段为例[J]. 石油实验地质, 2023, 45(3): 576-586. doi: 10.11781/sysydz202303576
AN Cheng, LIU Guangdi, SUN Mingliang, YOU Fuliang, WANG Zixin, CAO Yushun. Analysis of shale pore structure characteristics based on nitrogen adsorption experiment and fractal FHH model: a case study of 7th member of Triassic Yanchang Formation in Huachi area, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(3): 576-586. doi: 10.11781/sysydz202303576
Citation: AN Cheng, LIU Guangdi, SUN Mingliang, YOU Fuliang, WANG Zixin, CAO Yushun. Analysis of shale pore structure characteristics based on nitrogen adsorption experiment and fractal FHH model: a case study of 7th member of Triassic Yanchang Formation in Huachi area, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(3): 576-586. doi: 10.11781/sysydz202303576

基于氮气吸附实验与分形FHH模型分析页岩孔隙结构特征——以鄂尔多斯盆地华池地区长7段为例

doi: 10.11781/sysydz202303576
基金项目: 

中国石油天然气集团有限公司—中国石油大学(北京)战略合作科技专项 ZLZX2020-02

详细信息
    作者简介:

    安成(1996—),男,硕士生,从事油气藏形成机理、分布规律和非常规油气研究。E-mail: 13101643903@163.com

    通讯作者:

    柳广弟(1961—),男,博士,教授,从事油气藏形成与分布等方面的教学与科研工作。E-mail: lgd@cup.edu.cn

  • 中图分类号: TE348

Analysis of shale pore structure characteristics based on nitrogen adsorption experiment and fractal FHH model: a case study of 7th member of Triassic Yanchang Formation in Huachi area, Ordos Basin

  • 摘要: 孔隙结构是页岩储层研究的重点,对页岩油的赋存具有重要影响。选取鄂尔多斯盆地华池地区延长组7段的10块泥页岩岩心样品,通过扫描电镜观察及低温氮气吸附实验,结合分形FHH模型,计算分形维数,对研究区泥页岩的孔隙结构进行定量化表征,并在此基础上探讨分形维数与孔隙结构参数、含油性参数的关系,确定长7段泥页岩孔隙发育的主要影响因素。华池地区长7段泥页岩有机质丰度高,属于好—极好烃源岩,含油性与可动性较好,多达到中含油级别,主要由石英与黏土矿物组成;储集空间以粒间孔、粒内孔及少量有机质孔为主,孔隙形态有两类,分别为平行板状狭缝形+单边狭缝形及墨水瓶形+平行板状狭缝形,孔径以微孔和中孔为主,宏孔发育较少。多数样品具有分形特征,表征小孔隙的分形维数D1介于2.264 7~2.714 9之间,表征大孔隙的分形维数D2介于2.373 3~2.777之间。其中,D2同比表面积、孔体积、平均孔径及S1的相关性较好,可以表征孔隙结构发育特征和页岩的含油性;而D1仅可表征页岩油的可动性。泥页岩的孔隙发育主要受控于有机碳及石英含量,与长石含量有一定的关系,黏土矿物含量不是主要的影响因素。

     

  • 图  1  鄂尔多斯盆地构造单元划分(a)及延长组长7段地层发育特征(b)

    Figure  1.  Division of tectonic units in Ordos Basin (a) and stratigraphic development characteristics of 7th member of Yanchang Formation (b)

    图  2  鄂尔多斯盆地华池地区延长组长7段页岩样品的矿物组成特征

    Figure  2.  Mineral composition characteristics of shale samples from 7th member of Yanchang Formation in Huachi area, Ordos Basin

    图  3  鄂尔多斯盆地华池地区延长组长7段页岩样品的主要孔隙类型

    Figure  3.  Main pore types of shale samples from 7th member of Yanchang Formation in Huachi area, Ordos Basin

    图  4  鄂尔多斯盆地华池地区延长组长7段页岩样品的吸附—脱附曲线特征

    Figure  4.  Characteristics of adsorption-desorption curves of shale samples from 7th member of Yanchang Formation in Huachi area, Ordos Basin

    图  5  鄂尔多斯盆地华池地区延长组长7段页岩样品的孔径分布特征

    Figure  5.  Pore size distribution characteristics of shale samples from 7th member of Yanchang Formation in Huachi area, Ordos Basin

    图  6  鄂尔多斯盆地华池地区延长组长7段页岩样品分形维数的拟合曲线

    Figure  6.  Fitting curves of fractal dimension of shale samples from 7th member of Yanchang Formation in Huachi area, Ordos Basin

    图  7  鄂尔多斯盆地华池地区延长组长7段页岩样品的分形维数与孔隙结构参数之间的关系

    Figure  7.  Relationship between fractal dimension and pore structure parameters of shale samples from 7th member of Yanchang Formation in Huachi area, Ordos Basin

    图  8  鄂尔多斯盆地华池地区延长组长7段页岩样品的分形维数与含油性参数的关系

    Figure  8.  Relationship between fractal dimension and oil-bearing parameters of shale samples from 7th member of Yanchang Formation in Huachi area, Ordos Basin

    图  9  鄂尔多斯盆地华池地区延长组长7段页岩样品的孔隙发育影响因素分析

    Figure  9.  Influencing factors on pore development of shale samples from 7th member of Yanchang Formation in Huachi area, Ordos Basin

    表  1  鄂尔多斯盆地华池地区延长组长7段页岩样品的地球化学特征

    Table  1.   Geochemical characteristics of shale samples from 7th member of Yanchang Formation in Huachi area, Ordos Basin

    样品号 深度/m 岩性 ω(TOC)/% 氯仿沥青“A”/% S1/(mg·g-1) OSI/(mg·g-1) Tmax/℃
    cq137 2 011.06 黑色泥岩 6.46 0.78 1.95 30.20 453
    cq5 2 512.56 黑色页岩夹凝灰岩 17.88 0.69 3.97 22.20 459
    cq6 2 476.35 黑色页岩 2.75 0.42 2.59 94.08 454
    cq7 2 458.50 黑色页岩 11.16 0.61 3.77 33.78 456
    dq282 1 743.18 灰色泥岩夹薄层砂岩 0.74 0.14 0.12 16.27 453
    q217 1 804.80 灰黑色泥岩 23.24 1.11 7.97 34.29 445
    q304 2 050.50 灰黑色泥岩 2.90 0.62 2.10 72.56 448
    q308 2 055.62 灰黑色泥岩 2.31 0.54 2.59 112.22 445
    q314 2 063.86 灰黑色泥岩 4.00 0.84 3.69 92.30 441
    q33 1 992.50 灰黑色泥岩 0.68 0.11 0.28 41.00 454
    下载: 导出CSV

    表  2  鄂尔多斯盆地华池地区延长组长7段页岩样品的孔隙结构特征

    Table  2.   Pore structure characteristics of shale samples from 7th member of Yanchang Formation in Huachi area, Ordos Basin

    样号 孔隙结构参数 孔隙特征
    比表面积/(m2·g-1) 总孔体积/(10-3 cm3·g-1) 平均孔径/nm 孔隙形态 孔径集中分布范围
    cq137 1.84 5.79 8.74 平行板状狭缝形+单边狭缝形 较大的中孔
    cq5 0.64 2.15 27.21 平行板状狭缝形+单边狭缝形 较大的中孔
    cq6 3.34 6.11 8.67 墨水瓶形+平行板状狭缝形 微孔+中孔
    cq7 0.78 3.19 29.87 平行板状狭缝形+单边狭缝形 较大的中孔
    dq282 11.62 14.74 7.17 墨水瓶形+平行板状狭缝形 微孔+中孔+宏孔
    q217 0.44 1.78 18.36 墨水瓶形+平行板状狭缝形 较大的中孔
    q304 2.78 10.17 22.10 墨水瓶形+平行板状狭缝形 微孔+中孔
    q308 4.17 6.33 7.16 墨水瓶形+平行板状狭缝形 微孔+中孔+宏孔
    q314 4.99 8.24 7.75 墨水瓶形+平行板状狭缝形 微孔+中孔
    q33 10.54 16.12 8.17 墨水瓶形+平行板状狭缝形 微孔+中孔
    下载: 导出CSV

    表  3  鄂尔多斯盆地华池地区延长组长7段页岩样品的氮气吸附实验计算的分形维数

    Table  3.   Fractal dimension calculated by nitrogen adsorption experiment of shale samples from 7th member of Yanchang Formation in Huachi area, Ordos Basin

    样号 P/P0<0.5 P/P0>0.5
    拟合方程 R2 D1 拟合方程 R2 D2
    cq137 y=0.862 6x-5.420 8 0.521 3 3.862 6 y=-1.232 7x-7.194 6 0.870 1 1.767 3
    cq5 y=0.022 8x-3.626 8 0.011 6 3.022 8 y=-0.626 7x-4.537 0.968 2 2.373 3
    cq6 y=-0.512 7x-0.741 2 0.942 1 2.487 3 y=-0.245 6x-0.691 4 0.977 0 2.754 4
    cq7 y=-0.285 1x-1.487 1 0.642 9 2.714 9 y=-0.272 2x-1.849 7 0.953 0 2.727 8
    dq282 y=-0.367 8x+0.449 3 0.996 0 2.632 2 y=-0.253 4x+0.493 6 0.984 0 2.746 6
    q217 y=-0.330 2x-3.057 4 0.889 4 2.669 8 y=-0.607 1x-3.327 2 0.996 6 2.392 9
    q304 y=-0.412 7x+1.078 3 0.997 9 2.587 3 y=-0.227 9x+1.165 3 0.985 7 2.772 1
    q308 y=-0.647 8x-1.244 3 0.960 3 2.352 2 y=-0.331 2x-1.156 9 0.982 0 2.668 8
    q314 y=-0.735 3x-0.670 9 0.935 5 2.264 7 y=-0.414x-0.676 5 0.987 6 2.586 0
    q33 y=-0.468 6x+0.503 7 0.995 7 2.531 4 y=-0.223x+0.642 1 0.969 9 2.777 0
    下载: 导出CSV
  • [1] 邹才能, 张国生, 杨智, 等. 非常规油气概念、特征、潜力及技术: 兼论非常规油气地质学[J]. 石油勘探与开发, 2013, 40(4): 385-399. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304000.htm

    ZOU Caineng, ZHANG Guosheng, YANG Zhi, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: on unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304000.htm
    [2] YANG Zhi, ZOU Caineng, WU Songtao, et al. Formation, distribution and resource potential of the "sweet areas (sections)" of continental shale oil in China[J]. Marine and Petroleum Geology, 2019, 102: 48-60. doi: 10.1016/j.marpetgeo.2018.11.049
    [3] CHEN Kefei, LIU Xiaoping, LIU Jie, et al. Lithofacies and pore characterization of continental shale in the second member of the Kongdian Formation in the Cangdong Sag, Bohai Bay Basin, China[J]. Journal of Petroleum Science and Engineering, 2019, 177: 154-166. doi: 10.1016/j.petrol.2019.02.022
    [4] 鲍芳, 俞凌杰, 芮晓庆, 等. 页岩中有机质孔隙非均质性的微观结构及电镜—拉曼联用研究[J]. 石油实验地质, 2021, 43(5): 871-879. doi: 10.11781/sysydz202105871

    BAO Fang, YU Lingjie, RUI Xiaoqing, et al. Microstructure and SEM-Raman study of organic matter pore heterogeneity in shale[J]. Petroleum Geology & Experiment, 2021, 43(5): 871-879. doi: 10.11781/sysydz202105871
    [5] 张文凯, 施泽进, 田亚铭, 等. 联合高压压汞和恒速压汞实验表征致密砂岩孔喉特征[J]. 断块油气田, 2021, 28(1): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202101005.htm

    ZHANG Wenkai, SHI Zejin, TIAN Yaming, et al. The combination of high-pressure mercury injection and rate-controlled mercury injection to characterize the pore-throat structure in tight sandstone reservoirs[J]. Fault-Block Oil and Gas Field, 2021, 28(1): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202101005.htm
    [6] LI Tingwei, JIANG Zhenxue, SU Pibo, et al. Effect of laminae development on pore structure in the lower third member of the Shahejie shale, Zhanhua Sag, eastern China[J]. Interpretation, 2020, 8(1): T103-T114. doi: 10.1190/INT-2019-0055.1
    [7] 孙中良, 李志明, 申宝剑, 等. 核磁共振技术在页岩油气储层评价中的应用[J]. 石油实验地质, 2022, 44(5): 930-940. doi: 10.11781/sysydz202205930

    SUN Zhongliang, LI Zhiming, SHEN Baojian, et al. NMR technology in reservoir evaluation for shale oil and gas[J]. Petroleum Geology & Experiment, 2022, 44(5): 930-940. doi: 10.11781/sysydz202205930
    [8] 李楚雄, 申宝剑, 卢龙飞, 等. 松辽盆地沙河子组页岩孔隙结构表征: 基于低场核磁共振技术[J]. 油气藏评价与开发, 2022, 12(3): 468-476. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202203009.htm

    LI Chuxiong, SHEN Baojian, LU Longfei, et al. Pore structure characterization of Shahezi Formation shale in Songliao Basin: based on low-field nuclear magnetic resonance technology[J]. Reservoir Evaluation and Development, 2022, 12(3): 468-476. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202203009.htm
    [9] 冯动军, 肖开华. 恒速压汞及核磁共振技术在四川盆地西部致密砂岩储层评价中的应用[J]. 石油实验地质, 2021, 43(2): 368-376. doi: 10.11781/sysydz202102368

    FENG Dongjun, XIAO Kaihua. Constant velocity mercury injection and nuclear magnetic resonance in evaluation of tight sandstone reservoirs in western Sichuan Basin[J]. Petroleum Geo-logy & Experiment, 2021, 43(2): 368-376. doi: 10.11781/sysydz202102368
    [10] MANDELBROT B B. On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars[J]. Journal of Fluid Mechanics, 1975, 72(3): 401-416. doi: 10.1017/S0022112075003047
    [11] CAO Xiaomeng, GAO Yuan, CUI Jingwei, et al. Pore characteristics of lacustrine shale oil reservoir in the Cretaceous Qing-shankou Formation of the Songliao Basin, NE China[J]. Energies, 2020, 13(8): 2027.
    [12] LIU Kouqi, OSTADHASSAN M, JANG H W, et al. Comparison of fractal dimensions from nitrogen adsorption data in shale via different models[J]. RSC Advances, 2021, 11(4): 2298-2306. http://www.xueshufan.com/publication/3118704760
    [13] LIU Kouqi, OSTADHASSAN M, KONG Lingyun. Fractal and multifractal characteristics of pore throats in the Bakken shale[J]. Transport in Porous Media, 2019, 126(3): 579-598. http://www.onacademic.com/detail/journal_1000040411497310_86f5.html
    [14] 曾维主. 松辽盆地青山口组页岩孔隙结构与页岩油潜力研究[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2020.

    ZENG Weizhu. Pore structure and shale oil potential of Qingshankou Formation shale in Songliao Basin[D]. Guangzhou: University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), 2020.
    [15] 耳闯, 罗安湘, 赵靖舟, 等. 鄂尔多斯盆地华池地区三叠系延长组长7段富有机质页岩岩相特征[J]. 地学前缘, 2016, 23(2): 108-117. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602013.htm

    ER Chuang, LUO Anxiang, ZHAO Jingzhou, et al. Lithofacies features of organic-rich shale of the Triassic Yanchang Formation in Huachi area, Ordos Basin[J]. Earth Science Frontiers, 2016, 23(2): 108-117. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602013.htm
    [16] 王震. 鄂尔多斯盆地华池地区长7泥页岩综合评价[D]. 北京: 中国地质大学(北京), 2013.

    WANG Zhen. Comprehensive evaluation of Chang 7 shale in Huachi area, Ordos Basin[D]. Beijing: China University of Geosciences (Beijing), 2013.
    [17] 李超正. 鄂尔多斯盆地延长组长7致密油成藏条件研究[D]. 北京: 中国石油大学(北京), 2016.

    LI Chaozheng. Accumulation conditions research on tight oil reservoir of Chang 7 member of Yangchang Formation in Ordos Basin[D]. Beijing: China University of Petroleum (Beijing), 2016.
    [18] 曹茜. 鄂尔多斯盆地延长组长7段富有机质泥页岩储层微孔隙特征及表征技术[D]. 成都: 成都理工大学, 2016.

    CAO Qian. Characterization and techniques of micropores in organic-rich shale of Chang 7th of Yanchang Formation, Ordos Basin[D]. Chengdu: Chengdu University of Technology, 2016.
    [19] 付金华, 李士祥, 牛小兵, 等. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践[J]. 石油勘探与开发, 2020, 47(5): 870-883. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005005.htm

    FU Jinhua, LI Shixiang, NIU Xiaobing, et al. Geological characteristics and exploration of shale oil in Chang 7 member of Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(5): 870-883. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005005.htm
    [20] 杨华, 李士祥, 刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301000.htm

    YANG Hua, LI Shixiang, LIU Xianyang. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301000.htm
    [21] PFEIFERPER P, AVNIR D. Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces[J]. The Journal of Chemical Physics, 1983, 79(7): 3558-3565. http://www.researchgate.net/profile/David_Avnir/publication/253815538_Chemistry_in_Noninteger_Dimensions_Between_Two_and_Three._I._Fractal_Theory_of_Heterogenous_Surfaces/links/53e8cf9a0cf25d674ea86b47.pdf
    [22] 唐玄, 郑逢赞, 梁国栋, 等. 黔北寒武系牛蹄塘组页岩孔隙分形表征[J]. 地学前缘, 2023, 30(3): 110-123. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202303009.htm

    TANG Xuan, ZHENG Fengzan, LIANG Guodong, et al. Fractal characterization of pore structure of Cambrian Niutitang shale in northern Guizhou province, Southwestern China[J]. Earth Science Frontiers, 2023, 30(3): 110-123. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202303009.htm
    [23] 孙中良, 王芙蓉, 韩元佳, 等. 潜江凹陷盐间页岩油储层孔隙结构分形表征与评价[J]. 地质科技通报, 2022, 41(4): 125-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202204014.htm

    SUN Zhongliang, WANG Furong, HAN Yuanjia, et al. Characte-rization and evaluation of fractal dimension of intersalt shale oil reservoirs in Qianjiang Depression[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 125-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202204014.htm
    [24] JARVIE D M. Shale resource systems for oil and gas: Part 2— Shale-oil resource systems[M]//BREYER J A. Shale reservoirs— giant resources for the 21st century. [S. l. ]: American Association of Petroleum Geologists, 2012.
    [25] LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. http://www.wwgeochem.com/app/download/7753455/Loucks
    [26] 黄伟凯, 周新平, 刘江艳, 等. 鄂尔多斯盆地华池地区延长组7段页岩油储层孔隙结构特征及控制因素[J]. 天然气地球科学, 2022, 33(12): 1951-1968. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202212004.htm

    HUANG Weikai, ZHOU Xinping, LIU Jiangyan, et al. Characte-ristics and controlling factors of pore structure of shale in the seventh member of Yanchang Formation in Huachi area, Ordos Basin[J] Natural Gas Geoscience, 2022, 33(12): 1951-1968. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202212004.htm
    [27] SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619.
    [28] 李廷微. 沾化凹陷页岩储层孔隙结构特征及其对含油性的控制[D]. 北京: 中国石油大学(北京), 2018.

    LI Tingwei. Pore structure characteristics of shale reservoirs and their effects on oil-bearing properties in the Zhanhua Sag[D]. Beijing: China University of Petroleum (Beijing), 2018.
    [29] 俞雨溪. 鄂尔多斯盆地延长组页岩内粉砂质纹层孔隙结构和物性特征研究[D]. 青岛: 中国石油大学(华东), 2013.

    YU Yuxi. Pore-structure and petrophysical properties of silt laminae in lacustrine gas shale: example from the Yanchang Group, Ordos Basin[D]. Qingdao: China University of Petroleum (East China), 2013.
    [30] 慕尚超. 马朗凹陷芦草沟组泥页岩孔隙结构表征及其含油性评价[D]. 西安: 西安石油大学, 2021.

    MU Shangchao. Characterization of the pore structure of mud shales of the Luchaogou Formation in the Malang Depression and evaluation of their oil content[D]. Xi'an: Xi'an Shiyou University, 2021.
    [31] 朱晓萌, 朱文兵, 曹剑, 等. 页岩油可动性表征方法研究进展[J]. 新疆石油地质, 2019, 40(6): 745-753. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201906017.htm

    ZHU Xiaomeng, ZHU Wenbing, CAO Jian, et al. Research progress on shale oil mobility characterization[J]. Xinjiang Petroleum Geology, 2019, 40(6): 745-753. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201906017.htm
    [32] QIAN Chao, LI Xizhe, SHEN Weijun, et al. Study on the pore structure and fractal characteristics of different lithofacies of Wufeng-Longmaxi formation shale in southern Sichuan Basin, China[J]. ACS Omega, 2022, 7(10): 8724-8738. doi: 10.1021/acsomega.1c06913
    [33] 李吉君, 史颖琳, 黄振凯, 等. 松辽盆地北部陆相泥页岩孔隙特征及其对页岩油赋存的影响[J]. 中国石油大学学报(自然科学版), 2015, 39(4): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201504004.htm

    LI Jijun, SHI Yinglin, HUANG Zhenkai, et al. Pore characteristics of continental shale and its impact on storage of shale oil in northern Songliao Basin[J]. Journal of China University of Petroleum, 2015, 39(4): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201504004.htm
    [34] YANG Yuanyuan, ZHANG Jinchuan, XU Longfei, et al. Pore structure and fractal characteristics of deep shale: a case study from Permian Shanxi Formation shale, from the Ordos Basin[J]. ACS Omega, 2022, 7(11): 9229-9243. doi: 10.1021/acsomega.1c05779
    [35] 梁利喜, 熊健, 刘向君. 川南地区龙马溪组页岩孔隙结构的分形特征[J]. 成都理工大学学报(自然科学版), 2015, 42(6): 700-708. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201506009.htm

    LIANG Lixi, XIONG Jian, LIU Xiangjun. Fractal characteristics of pore structure of Longmaxi Formation shale in south of Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2015, 42(6): 700-708. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201506009.htm
    [36] 陈居凯, 朱炎铭, 崔兆帮, 等. 川南龙马溪组页岩孔隙结构综合表征及其分形特征[J]. 岩性油气藏, 2018, 30(1): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201801006.htm

    CHEN Jukai, ZHU Yanming, CUI Zhaobang, et al. Pore structure and fractal characteristics of Longmaxi shale in southern Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(1): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201801006.htm
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  753
  • HTML全文浏览量:  384
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-02
  • 修回日期:  2023-04-13
  • 刊出日期:  2023-05-28

目录

    /

    返回文章
    返回