Experimental study on hydrocarbon generation and expulsion characteristics of shale with different source-reservoir structures in Lucaogou Formation, Jimsar Sag, Junggar Basin
-
摘要: 准噶尔盆地东部吉木萨尔凹陷二叠系芦草沟组为中国典型陆相页岩油层系。为了探究不同源储组合对烃源岩生排油的影响,基于前人对芦草沟组源储组合类型的划分,利用半封闭热模拟体系,开展不同源储结构芦草沟组页岩生排油实验研究,为页岩油富集规律及“甜点”精细评价提供参考依据。实验结果显示,储夹源型组合模式更有利于排油,源储互层型略低,源夹储型排油效率最低。碎屑岩+烃源岩组合下,储夹源型、源储互层型和源夹储型排油效率分别为35.6%、30.7%、25.6%;碳酸盐岩+烃源岩组合下,储夹源型、源储互层型和源夹储型排油效率分别为27.4%、27.5%、12.3%。结合排出油、储层中接收油及烃源岩中滞留油的族组成特征,发现储集岩中的接收油主要来自邻源供烃,源储距离越远,供烃关系越不明显。储夹源型页岩主要为下部邻源供油的特点,上部碎屑岩储层接收油量为10.7 mg/g,而下部碎屑岩储层接收油量仅为1.4 mg/g;源夹储型页岩以自生自储为主,烃源岩的滞留油含量较高,碎屑岩储层接收油量为6.0 mg/g,烃源岩中滞留油量为21.1 mg/g;源储互层型页岩以邻源供烃为主,自生自储为辅,从烃源岩到储集岩,抽提物族组分变化差异并不大,饱和烃含量分布在22.8%~33.0%,芳烃含量分布在6.2%~15.1%,非烃和沥青质含量分布在28.5%~41.1%和21.0%~30.0%,且储层岩性不同对其生排油效率影响相对较弱,含油性非均质性弱。从不同源储结构页岩生排油效率来看,源储互层型和储夹源型是芦草沟组页岩油勘探的较为有利的配置组合。Abstract: The Permian Lucaogou Formation in the Jimusar Sag in the east of the Junggar Basin is a typical continental shale oil series in China. Employing the semi-closed thermal simulation system, an experimental study on hydrocarbon generation and expulsion of shale with different source-reservoir structures was carried out to explore the efficiency and composition characteristics of hydrocarbon generation and expulsion of shale in the Permian Lucaogou Formation with different source-reservoir structures so as to provide reference for the enrichment rule of shale hydrocarbon and the fine evaluation of "sweet spots". The experimental results show that thick reservoir interbedded with thin source rock is more conducive to hydrocarbon expulsion and features the highest hydrocarbon expulsion efficiency, while thin source rock interbedded with thin reservoir features slightly lower hydrocarbon expulsion efficiency, and thick source rock interbedded with thin reservoir features the lowest hydrocarbon expulsion efficiency. When reservoir lithology is clastic rock, the hydrocarbon expulsion efficiency of thick reservoir interbedded with thin source rock, thin source rock interbedded with thin reservoir, and thick source rock interbedded with thin reservoir are 35.6%, 30.7%, and 25.6%, respectively. When reservoir lithology is carbonate rock, the hydrocarbon expulsion efficiency of these three combinations are 27.4%, 27.5%, and 12.3%, respectively. Combined with composition of expelled hydrocarbon, received hydrocarbon in reservoir, and retained hydrocarbon in source rock, it is found that received hydrocarbon in reservoir rock is mainly supplied by neighboring sources, and the farther away from source-reservoir interface, the less relevant relationship between source rock and hydrocarbon in reservoir. Hydrocarbon in reservoir is supplied by lower adjacent source rock in thick reservoir interbedded with thin source rock, and the received hydrocarbon in upper clastic reservoir is 10.7 mg/g, while received hydrocarbon in lower clastic reservoir is only 1.4 mg/g. The thick source rock interbedded with thin reservoir is mainly self-generated and self-stored, and the content of retained hydrocarbon in source rock is high, the received hydrocarbon in upper clastic reservoir is 6.0 mg/g, while retained hydrocarbon in source rock is 21.1 mg/g. Hydrocarbon in reservoir is mainly supplied by lower adjacent source rock and partly from its own source rock in thin source rock interbedded with thin reservoir. There is no significant difference between source rock and reservoir rock in the extraction family, with the content of saturated hydrocarbon in the range of 22.8%-33.0%, aromatics in the range of 6.2%-15.1%, and non-hydrocarbon and asphaltene in the range of 28.5%-41.1% and 21.0%-30.0%. Moreover, different reservoir lithology has relatively weak influence on hydrocarbon generation and expulsion efficiency, and the hydrocarbon-bearing heterogeneity is weak in thin source rock interbedded with thin reservoir. From the perspective of hydrocarbon generation and expulsion efficiency of shale with different source-reservoir structures, thick reservoir interbedded with thin source rock and thin source rock interbedded with thin reservoir are the favorable combinations for hydrocarbon exploration in the shale of the Lucaogou Formation.
-
图 2 生排油模拟实验中不同源储结构组合模式示意[19]
Figure 2. Schematic diagram of combination model of source-reservoir structures in hydrocarbon generation and expulsion simulation experiment
-
[1] 何川, 郑伦举, 王强, 等. 烃源岩生排烃模拟实验技术现状、应用与发展方向[J]. 石油实验地质, 2021, 43(5): 862-870. doi: 10.11781/sysydz202105862HE Chuan, ZHENG Lunju, WANG Qiang, et al. Experimental development and application of source rock thermal simulation for hydrocarbon generation and expulsion[J]. Petroleum Geology & Experiment, 2021, 43(5): 862-870. doi: 10.11781/sysydz202105862 [2] 刘显阳, 吴凯, 孔庆芬, 等. 鄂尔多斯盆地长7段页岩半开放体系生排烃模拟实验研究[J]. 地球化学, 2022, 51(4): 434-440. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX202204006.htmLIU Xianyang, WU Kai, KONG Qingfen, et al. Semi-closed heat simulation experiment of a Chang 7 member shale in the Ordos Basin[J]. Geochimica, 2022, 51(4): 434-440. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX202204006.htm [3] 张心罡, 庞宏, 庞雄奇, 等. 四川盆地上二叠统龙潭组烃源岩生、排烃特征及资源潜力[J]. 石油与天然气地质, 2022, 43(3): 621-632. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202203011.htmZHANG Xingang, PANG Hong, PANG Xiongqi, et al. Hydrocarbon generation and expulsion characteristics and resource potential of source rocks in the Longtan Formation of Upper Permian, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(3): 621-632. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202203011.htm [4] 陈建平, 孙永革, 钟宁宁, 等. 地质条件下湖相烃源岩生排烃效率与模式[J]. 地质学报, 2014, 88(11): 2005-2032. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201411001.htmCHEN Jianping, SUN Yongge, ZHONG Ningning, et al. The efficiency and model of petroleum expulsion from the lacustrine source rocks within geological frame[J]. Acta Geologica Sinica, 2014, 88(11): 2005-2032. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201411001.htm [5] 秦建中, 刘宝泉. 海相不同类型烃源岩生排烃模式研究[J]. 石油实验地质, 2005, 27(1): 74-80. doi: 10.11781/sysydz200501074QIN Jianzhong, LIU Baoquan. Models of hydrocarbon generation and expulsion from various marine source rocks[J]. Petroleum Geology & Experiment, 2005, 27(1): 74-80. doi: 10.11781/sysydz200501074 [6] 秦建中, 刘宝泉, 郑伦举, 等. 海相碳酸盐岩烃源岩生排烃能力研究[J]. 石油与天然气地质, 2006, 27(3): 348-355. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200603008.htmQIN Jianzhong, LIU Baoquan, ZHENG Lunju, et al. Study on capability of hydrocarbon generation and expulsion from marine carbonate source rocks[J]. Oil & Gas Geology, 2006, 27(3): 348-355. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200603008.htm [7] 周杰, 庞雄奇, 李娜. 渤海湾盆地济阳坳陷烃源岩排烃特征研究[J]. 石油实验地质, 2006, 28(1): 59-64. doi: 10.11781/sysydz200601059ZHOU Jie, PANG Xiongqi, LI Na. Characteristics of hydrocarbon expulsion for the Lower Tertiary resource rocks in the Jiyang Depression, the Bohaiwan Basin[J]. Petroleum Geology & Experiment, 2006, 28(1): 59-64. doi: 10.11781/sysydz200601059 [8] 李宏义, 徐建永, 李友川, 等. 北部湾盆地流二段不同类型烃源岩生排烃效率与成藏贡献对比[J]. 中国海上油气, 2020, 32(6): 22-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202006003.htmLI Hongyi, XU Jianyong, LI Youchuan, et al. Comparison on the efficiency of hydrocarbon generation & expulsion and the contribution to hydrocarbon accumulation of different source rocks in Liu 2 member, Beibuwan Basin[J]. China Offshore Oil and Gas, 2020, 32(6): 22-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202006003.htm [9] 李二庭, 向宝力, 刘向军, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油偏稠成因分析[J]. 天然气地球科学, 2020, 31(2): 250-257. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202002010.htmLI Erting, XIANG Baoli, LIU Xiangjun, et al. Study on the genesis of shale oil thickening in Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Natural Gas Geoscience, 2020, 31(2): 250-257. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202002010.htm [10] 吉鸿杰, 邱振, 陶辉飞, 等. 烃源岩特征与生烃动力学研究: 以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J]. 岩性油气藏, 2016, 28(4): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201604007.htmJI Hongjie, QIU Zhen, TAO Huifei, et al. Source rock characte-ristics and hydrocarbon generation kinetics: a case study of the Permian Lucaogou Formation in Jimusar Sag, Junggar Basin[J]. Lithologic Reservoirs, 2016, 28(4): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201604007.htm [11] MA Weijiao, HOU Lianhua, LUO Xia, et al. Generation and expulsion process of the Chang 7 oil shale in the Ordos Basin based on temperature-based semi-open pyrolysis: implications for in-situ conversion process[J]. Journal of Petroleum Science and Engineering, 2020, 190: 107035. [12] 郭旭光, 何文军, 杨森, 等. 准噶尔盆地页岩油"甜点区"评价与关键技术应用: 以吉木萨尔凹陷二叠系芦草沟组为例[J]. 天然气地球科学, 2019, 30(8): 1168-1179. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201908010.htmGUO Xuguang, HE Wenjun, YANG Sen, et al. Evaluation and application of key technologies of "sweet area" of shale oil in Junggar Basin: case study of Permian Lucaogou Formation in Jimusar Depression[J]. Natural Gas Geoscience, 2019, 30(8): 1168-1179. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201908010.htm [13] 王林生, 叶义平, 覃建华, 等. 陆相页岩油储层微观孔喉结构表征与含油性分级评价: 以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 石油与天然气地质, 2022, 43(1): 149-160. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202201011.htmWANG Linsheng, YE Yiping, QIN Jianhua, et al. Microscopic pore structure characterization and oil-bearing property evaluation of lacustrine shale reservoir: a case study of the Permian Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Oil & Gas Geology, 2022, 43(1): 149-160. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202201011.htm [14] 李二庭, 王剑, 李际, 等. 源储一体烃源岩精确评价: 以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J]. 石油实验地质, 2021, 43(2): 335-342. doi: 10.11781/sysydz202102335LI Erting, WANG Jian, LI Ji, et al. Accurate evaluation of source rocks in source-reservoir integration: a case study of source rocks in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 335-342. doi: 10.11781/sysydz202102335 [15] 王剑, 李二庭, 陈俊, 等. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组优质烃源岩特征及其生烃机制研究[J]. 地质论评, 2020, 66(3): 755-764. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202003019.htmWANG Jian, LI Erting, CHEN Jun, et al. Characteristics and hydrocarbon generation mechanism of high-quality source rocks in Permian Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Geolo-gical Review, 2020, 66(3): 755-764. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202003019.htm [16] 王然, 常秋生, 钱永新, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油"甜点体"储集特征及成因机理[J]. 石油实验地质, 2020, 42(4): 604-611. doi: 10.11781/sysydz202004604WANG Ran, CHANG Qiusheng, QIAN Yongxin, et al. Reservoir characteristics and genesis of shale oil "sweet spots" in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 604-611. doi: 10.11781/sysydz202004604 [17] 苏阳, 查明, 曲江秀, 等. 吉木萨尔凹陷芦草沟组致密油聚集过程模拟及主控因素分析[J]. 中国石油大学学报(自然科学版), 2019, 43(6): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201906002.htmSU Yang, ZHA Ming, QU Jiangxiu, et al. Simulations on oil accumulation processes and controlling factors in tight reservoirs of Lucaogou Formation of Jimsar Sag[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(6): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201906002.htm [18] 曲长胜, 邱隆伟, 操应长, 等. 吉木萨尔凹陷二叠系芦草沟组烃源岩有机岩石学特征及其赋存状态[J]. 中国石油大学学报(自然科学版), 2017, 41(2): 30-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201702004.htmQU Changsheng, QIU Longwei, CAO Yingchang, et al. Organic petrology characteristics and occurrence of source rocks in Permian Lucaogou Formation, Jimsar Sag[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(2): 30-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201702004.htm [19] 马中良, 郑伦举, 秦建中, 等. 盆地沉降、抬升过程中源储压差的生排烃效应[J]. 石油实验地质, 2011, 33(4): 402-407. doi: 10.11781/sysydz201104402MA Zhongliang, ZHENG Lunju, QIN Jianzhong, et al. Hydrocarbon generation and expulsion caused by pressure difference between source rock and reservoir during basin subsiding and uplifting[J]. Petroleum Geology & Experiment, 2011, 33(4): 402-407. doi: 10.11781/sysydz201104402 [20] 单云. 芦草沟组干酪根的生烃模式及产物谱学特征研究[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2018.SHAN Yun. Hydrocarbon evolution pattern and spectrum characteristics of products of kerogen of Lucaogou Formation[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2018. [21] LEWAN M D, WILLIAMS J A. Evaluation of petroleum generation from resinites by hydrous pyrolysis[J]. AAPG Bulletin, 1987, 71(2): 207-214. [22] 马中良, 郑伦举, 李志明, 等. 盐类物质对泥质烃源岩生排烃过程的影响[J]. 西南石油大学学报(自然科学版), 2013, 35(1): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201301005.htmMA Zhongliang, ZHENG Lunju, LI Zhiming, et al. The effect of salts on hydrocarbon generation and expulsion of argillaceous source rock[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(1): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201301005.htm