Paleotemperature evolution and its driving mechanism during the formation of limestone-marl alternations in first member of Middle Permian Maokou Formation in Sichuan Basin
-
摘要: 发生于晚石炭世—中二叠世末期的冰期事件是显生宙史上最剧烈的冰期事件,也是地史上最后一次从冰室期到温室期的转换期。通过薄片鉴定、扫描电镜、主量元素、微量元素、碳氧同位素和锶同位素等地球化学手段,对四川盆地中二叠统茅口组一段古温度及古气候进行恢复,探讨中二叠世重大气候演变过程及驱动机制。研究结果表明,四川盆地中二叠统茅一段灰岩—泥质灰岩韵律层的生物组合类型以有孔虫、腕足和软体动物为主,不发育造礁生物和钙质绿藻;岩石结构以生物碎屑支撑和灰泥支撑为主,无鲕粒等非骨架颗粒,与国际典型的凉水碳酸盐岩类似。通过δ18O与ω(Mg)/ω(Ca)恢复古温度,灰岩沉积期的古海水温度为3.72~12.38 ℃(平均8.15 ℃,δ18O标准),13.79~14.28 ℃(平均13.90 ℃,ω(Mg)/ω(Ca)标准);泥质灰岩沉积期的古海水温度为7.00~14.24 ℃(平均10.97 ℃,δ18O标准),13.82~15.41 ℃(平均14.27℃,ω(Mg)/ω(Ca)标准)。中二叠统茅一段沉积期古温度变化主要受米兰科维奇短偏心率旋回驱动,短偏心率的旋回性变化是古温度、古气候旋回变化的驱动机制。Abstract: From the Late Carboniferous to the end of Middle Permian, the most intense glacial event in history of Phanerozoic occurred and it is also the last transition period from icehouse stage to greenhouse stage in geological history. In this paper, the paleotemperature and paleoclimate in the first member of the Middle Permian Maokou Formation (Mao-1) were restored by means of thin section identification, scanning electron microscope, major elements, trace elements, carbon isotopes, oxygen isotopes and strontium isotopes, and the major climate evolution process and its driving mechanism in the Middle Permian were discussed. The results show that the biological assemblage type (mainly composed of foraminifera, brachiopods and molluscs, without reef-building organisms or calcareous green algae) and rock structure characteristics (supported by bioclastic and plaster, without oolitic or other non-skeletal particles) of the limestone-marl alternations in the Mao-1 member are similar to those of the international typical cool-water carbonate. During the limestone sedimentary period, the paleotemperature of seawater was 3.72 to 12.38 ℃ (8.15 ℃ in average, δ18O standard) or 13.79 to 14.28 ℃ (13.90 ℃ in average, ω(Mg)/ ω(Ca) standard), while during the marl sedimentary period, the paleotemperature of seawater was 7.00 to 14.24 ℃ (10.97 ℃ in average, δ18O standard) and 13.82 to 15.41 ℃ (14.27 ℃ in average, ω(Mg)/ω(Ca) standard). The paleotemperature changes in the sedimentary period of Mao-1 Member was mainly driven by the short eccentricity cycle of Milankovitch. The cyclical change of the short eccentricity was the driving mechanism of paleotemperature and paleoclimate cycle changes.
-
图 3 四川盆地华蓥山剖面灰岩—泥质灰岩韵律层特征
a.透镜状灰岩—泥质灰岩韵律宏观特征;b透镜状灰岩—泥质灰岩韵律,平行层面观察,层面波状起伏;c.透镜状灰岩—泥质灰岩韵律,垂直层面观察,具半球状凸起;d.层状灰岩—泥质灰岩韵律宏观特征1;e.层状灰岩—泥质灰岩韵律宏观特征2;f.灰岩—泥质灰岩韵律中灰岩层与泥质灰岩层呈渐变接触关系;g.泥质灰岩,生物碎屑间被大量滑石充填具波状起伏,HY-12-3,×5,单偏光;h.泥质灰岩,生物碎屑破碎呈定向分布,HS4-97,×2.5,单偏光;i.泥质灰岩,有孔虫,HY-19-1,×5,单偏光;j.泥质灰岩,双壳,HY-6-5,×5,单偏光;k.泥质灰岩,腹足、腕足,HY-19-3,×5,单偏光;l.泥质灰岩,苔藓虫,Z8-19,×5,单偏光;m.灰岩,有孔虫,HY-15-1,×5,单偏光;n.灰岩,苔藓虫,HY-14-3,×5,单偏光;o.灰岩,腕足,HY-8-3,×5,单偏光。L.灰岩层;M.泥质灰岩层。
Figure 3. Characteristics of limestone-marl alternations in Huayingshan section, Sichuan Basin
图 5 四川盆地茅一段灰岩—泥质灰岩韵律古气候判别图版
据参考文献[30]修改。
Figure 5. Paleoclimate discrimination of limestone-marl alternations in first member of Middle Permian Maokou Formation in Sichuan Basin
-
[1] NELSON C S, JAMES N P. Marine cements in mid-Tertiary cool-water shelf limestones of New Zealand and southern Australia[J]. Sedimentology, 2000, 47(3): 609-629. doi: 10.1046/j.1365-3091.2000.00314.x [2] MARTÍN J M, BRAGA J C, BETZLER C, et al. Sedimentary model and high-frequency cyclicity in a Mediterranean, shallow-shelf, temperate-carbonate environment(uppermost Miocene, Agua Amarga Basin, southern Spain)[J]. Sedimentology, 1996, 43(2): 263-277. doi: 10.1046/j.1365-3091.1996.d01-4.x [3] DRAPER J J. Permian limestone in the southeastern Bowen Basin, Queensland: an example of temperate carbonate deposition[J]. Sedimentary Geology, 1988, 60(1/4): 155-162. [4] LAVOIE D. A Late Ordovician high-energy temperate-water carbonate ramp, southern Quebec, Canada: implications for Late Ordovician oceanography[J]. Sedimentology, 1995, 42(1): 95-116. doi: 10.1111/j.1365-3091.1995.tb01273.x [5] JAMES N P, BONE Y. Pleistocene aeolianites at Cape Spencer, South Australia; Record of a vanished inner neritic cool-water carbonate factory[J]. Sedimentology, 2015, 62(7): 2038-2059. doi: 10.1111/sed.12216 [6] FRANK T D. Diagenetic pathways in heterozoan carbonates[C]//AAPG 2016 Annual Convention and Exhibition. Calgary, Alberta, Canada: AAPG, 2016. [7] 贾承造, 张杰, 沈安江, 等. 非暖水碳酸盐岩: 沉积学进展与油气勘探新领域[J]. 石油学报, 2017, 38(3): 241-254. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201703001.htmJIA Chengzao, ZHANG Jie, SHEN Anjiang, et al. Non-tropical carbonate: progress in sedimentology and new field of petroleum exploration[J]. Acta Petrolei Sinica, 2017, 38(3): 241-254. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201703001.htm [8] PUGLIANO T M, GOLDSTEIN R H, FRANSEEN E K. Fundamental controls on modeling reservoir properties of fining-updip heterozoan carbonates[C]//AAPG 2016 Annual Convention and Exhibition. Calgary, Alberta, Canada: AAPG, 2016. [9] PARRISH J T, SOREGHAN G S. Sedimentary geology and the future of paleoclimate studies[J]. The Sedimentary Record, 2013, 11(2): 4-10. doi: 10.2110/sedred.2013.2.4 [10] KLAGES J P, SALZMANN U, BICKERT T, et al. Temperate rainforests near the South Pole during peak Cretaceous warmth[J]. Nature, 2020, 580(7801): 81-86. doi: 10.1038/s41586-020-2148-5 [11] ISBELL J L, HENRY L C, GULBRANSON E L, et al. Glacial paradoxes during the Late Paleozoic ice age: evaluating the equilibrium line altitude as a control on glaciation[J]. Gondwana Research, 2012, 22(1): 1-19. doi: 10.1016/j.gr.2011.11.005 [12] FRANK T D, JAMES N P, SHULTIS A I. Lack of synsedimentary chemical alteration in polar carbonates(Ross Sea, Antarctica): resolution of a conundrum[J]. Journal of Sedimentary Research, 2020, 90(5): 449-467. doi: 10.2110/jsr.2020.26 [13] WANG Wenqian, GARBELLI C, ZHANG Feifei, et al. A high-resolution Middle to Late Permian paleotemperature curve reconstructed using oxygen isotopes of well-preserved brachiopod shell[J]. Earth and Planetary Science Letters, 2020, 540: 116245 doi: 10.1016/j.epsl.2020.116245 [14] KANI T, HISANABE C, ISOZAKI Y. The Capitanian (Permian) minimum of 87Sr/86Sr ratio in the mid-Panthalassan paleo-atoll carbonates and its demise by the deglaciation and continental doming[J]. Gondwana Research, 2013, 24(1): 212-221. doi: 10.1016/j.gr.2012.08.025 [15] FIELDING C R, FRANK T D, ISBELL J L. The Late Paleozoic ice age: a review of current understanding and synthesis of global climate patterns[M]//FIELDING C R, FRANK T D, ISBELL J L. Resolving the Late Paleozoic ice age in time and space. Geological Society of America, 2008: 343-354. [16] HAIG D W, MORY A J, MCCARTAIN E, et al. Late Artinskian-Early Kungurian(Early Permian)warming and maximum marine flooding in the east Gondwana interior rift, Timor and western Australia, and comparisons across east Gondwana[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 88-121. doi: 10.1016/j.palaeo.2016.11.051 [17] SCOTESE C R. Atlas of Middle & Late Permian and Triassic paleogeographic maps, maps 43-52 from volumes 3 & 4 of the paleomap atlas for ArcGIS, Mollweide Projection. Paleomap Project, Evanston, 2014. [18] 冯增昭, 杨玉卿, 金振奎, 等. 中国南方二叠纪岩相古地理[J]. 沉积学报, 1996, 14(2): 3-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB602.000.htmFENG Zengzhao, YANG Yuqing, JIN Zhenkui, et al. Lithofacies paleogeography of the Permian of South China[J]. Acta Sedi-mentologica Sinica, 1996, 14(2): 3-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB602.000.htm [19] SHEN Shuzhong, WANG Yue, HENDERSON C M, et al. Bio-stratigraphy and lithofacies of the Permian system in the Laibin-Heshan area of Guangxi, South China[J]. Palaeoworld, 2007, 16(1/3): 120-139. [20] 沈树忠, 张华, 张以春, 等. 中国二叠纪综合地层和时间框架[J]. 中国科学: 地球科学, 2019, 49(1): 160-193. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201901009.htmSHEN Shuzhong, ZHANG Hua, ZHANG Yichun, et al. Permian integrative stratigraphy and timescale of China[J]. Science China Earth Sciences, 2019, 62(1): 154-188. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201901009.htm [21] SU Chengpeng, LI Fei, TAN Xiucheng, et al. Recognition of diagenetic contribution to the formation of limestone-marl alternations: a case study from Permian of South China[J]. Marine and Petroleum Geology, 2020, 111: 765-785. doi: 10.1016/j.marpetgeo.2019.08.033 [22] 李大军, 陈辉, 陈洪德, 等. 四川盆地中二叠统茅口组储层形成与古构造演化关系[J]. 石油与天然气地质, 2016, 37(5): 756-763. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201605016.htmLI Dajun, CHEN Hui, CHEN Hongde, et al. Relationship between reservoir development in the Middle Permian Maokou Formation and paleostructure evolution in the Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(5): 756-763. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201605016.htm [23] 范建平, 宋金民, 江青春, 等. 川东地区中二叠统茅口组一段储层特征与形成模式[J]. 石油与天然气地质, 2022, 43(6): 1413-1430. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202206011.htmFAN Jianping, SONG Jinmin, JIANG Qingchun, et al. Reservoir characteristics and development model of the Middle Permian Mao-1 Member in eastern Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(6): 1413-1430. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202206011.htm [24] 韩月卿, 李双建, 韩文彪, 等. 川东南地区中二叠统茅口组灰泥灰岩储层孔隙特征[J]. 石油实验地质, 2022, 44(4): 666-676. doi: 10.11781/sysydz202204666HAN Yueqing, LI Shuangjian, HAN Wenbiao, et al. Pore characteristics of marl reservoir in Maokou Formation of Middle Permian, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(4): 666-676. doi: 10.11781/sysydz202204666 [25] LEI Han, HUANG Wenhui, JIANG Qingchun, et al. Genesis of clay minerals and its insight for the formation of limestone marl alterations in Middle Permian of the Sichuan Basin[J]. Journal of Petroleum Science and Engineering, 2022, 218: 111014. doi: 10.1016/j.petrol.2022.111014 [26] DERRY L A, KAUFMAN A J, JACOBSEN S B. Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes[J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1317-1329. doi: 10.1016/0016-7037(92)90064-P [27] QING Hairuo, VEIZER J. Oxygen and carbon isotopic composition of Ordovician brachiopods: implications for coeval seawater[J]. Geochimica et Cosmochimica Acta, 1994, 58(20): 4429-4442. doi: 10.1016/0016-7037(94)90345-X [28] KORTE C, JASPER T, KOZUR H W, et al. δ18O and δ13C of Permian brachiopods: a record of seawater evolution and continental glaciation[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2005, 224(4): 333-351. doi: 10.1016/j.palaeo.2005.03.015 [29] RAO C P. Geochemical differences between tropical (Ordovician) and subpolar (Permian) carbonates, Tasmania, Australia[J]. Geo-logy, 1981, 9(5): 205-209. [30] KADIR S, EREN M, I·KEÇ T, et al. An approach to genesis of sepiolite and palygorskite in lacustrine sediments of the Lower Pliocene Sakarya and Porsuk formations in the Sivrihisar and Yunusemre-Biçer regions(Eskişehir), Turkey[J]. Clays and Clay Minerals, 2017, 65(5/6): 310-328. [31] WEI Gangjian, LIU Ying, LI Xianhua, et al. Major and trace element variations of the sediments at ODP Site 1144, South China Sea, during the last 230 ka and their paleoclimate implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(3/4): 33-342. [32] ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318. [33] DYMOND J, SUESS E, LYLE M. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity[J]. Paleoceanography, 1992, 7(2): 163-181. doi: 10.1029/92PA00181 [34] MURRAY RW, KNOWLTON C, LEINEN M, et al. Export production and terrigenous matter in the Central Equatorial Pacific Ocean during interglacial oxygen isotope stage 11[J]. Global and Planetary Change, 2000, 24(1): 59-78. doi: 10.1016/S0921-8181(99)00066-1 [35] MUSASHI M, ISOZAKI Y, KAWAHATA H. An Early-Middle Guadalupian (Permian) isotopic record from a mid-oceanic carbonate buildup: Akiyoshi limestone, Japan[J]. Global and Planetary Change, 2010, 73(1/2): 114-122. [36] KORTE C, JASPER T, KOZUR H W, et al. 87Sr/86Sr record of Permian seawater[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1/2): 89-107. [37] ISOZAKI Y. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea[J]. Science, 1997, 276(5310): 235-238. [38] HASTINGS D W, RUSSELL A D, EMERSON S R. Foraminiferal magnesium in Globeriginoides sacculifer as a paleotemperature proxy[J]. Paleoceanography, 1998, 13(2): 161-169. [39] 邵龙义, 窦建伟, 张鹏飞. 西南地区晚二叠世氧、碳稳定同位素的古地理意义[J]. 地球化学, 1996, 25(6): 575-581. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX606.006.htmSHAO Longyi, DOU Jianwei, ZHANG Pengfei. Paleogeographic significances of carbon andoxygen isotopes in Late Permian rocks of southwest China[J]. Geochimica, 1996, 25(6): 575-581. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX606.006.htm [40] GIVEN R K, LOHMANN K C. Isotopic evidence for the early meteoric diagenesis of the reef facies, Permian reef complex of west Texas and New Mexico[J]. Journal of Sedimentary Research, 1986, 56(2): 183-193. [41] CHEN Bo, JOACHIMSKI M M, SHEN Shuzhong, et al. Permian ice volume and palaeoclimate history: oxygen isotope proxies revisited[J]. Gondwana Research, 2013, 24(1): 77-89. [42] CHEN Bo, JOACHIMSKI M M, WANGXiaodong, et al. Ice volume and paleoclimate history of the Late Paleozoic ice age from conodont apatite oxygen isotopes from Naqing(Guizhou, China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 151-161. [43] LÉCUYER C, AMIOT R, TOUZEAU A, et al. Calibration of the phosphate δ18O thermometer with carbonate-water oxygen isotope fractionation equations[J]. Chemical Geology, 2013, 347: 217-226. [44] HAYS P D, GROSSMAN E L. Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate[J]. Geology, 1991, 19(5): 441-444. [45] FOSTR G L, ROYER D L, LUNT D J. Future climate forcing potentially without precedent in the last 420 million years[J]. Nature Communications, 2017, 8: 14845. [46] BAGHERPOUR B, BUCHER H, SCHNEEBELI-HERMANN E, et al. Early Late Permian coupled carbon and strontium isotope chemostratigraphy from South China: extended Emeishan volcanism?[J]. Gondwana Research, 2018, 58: 58-70. [47] FALAHATKHAH O, KORDI M, FATEMI V, et al. Recognition of Milankovitch cycles during the Oligocene-Early Miocene in the Zagros Basin, SW Iran: implications for paleoclimate and sequence stratigraphy[J]. Sedimentary Geology, 2021, 421: 105957. [48] FANG Qiang, WU Huaichun, HINNOV L A, et al. Astronomical cycles of Middle Permian Maokou Formation in South China and their implications for sequence stratigraphy and paleoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 474: 130-139.