Characterization parameters of the evolution degree of strike-slip faults
-
摘要: 走滑断裂及其相关构造具有巨大的油气勘探价值,准确认识走滑断裂的演化程度关乎走滑构造带油气勘探的效果。前人的研究已经对走滑构造的生长演化过程有了定性认识,但仍缺乏客观定量确定走滑断裂带演化程度的依据,其核心问题是缺少能够表征走滑断裂演化程度的参数。为解决此问题,基于自身开展的里德尔剪切构造物理模拟实验,采集平面图像,进行了走滑断裂带内断裂几何学参数的统计分析。通过分析断裂带演化过程中平面结构阶段性变化与几何学统计参数变化的对应关系,揭示了断裂演化过程中几何学参数的变化规律,提出了将同一条断裂带内相邻断裂间夹角数据的标准差作为走滑构造演化程度表征参数的新认识。走滑断裂带演化程度与断裂带内相邻断裂夹角数据标准差具有明显相关关系,不同演化程度中的平面构造样式与断裂带内相邻断裂夹角数据的标准差值分布区间相对应;依据断裂平面组合样式,走滑断裂演化阶段可以划分为剪切单向破裂阶段、剪切雁列破裂阶段、剪切连通破裂阶段,分别对应断裂带内相邻断裂夹角数据标准差值(S)范围为1<S<4、4≤S<8、S≥8;针对实际的走滑断裂带,通过统计断裂带内相邻断裂夹角数据的标准差能够分析出走滑断裂的演化程度。Abstract: Strike-slip faults and their related structures have great value for oil and gas exploration. Accurate understanding of the evolution degree of strike-slip faults is crucial to oil and gas exploration in strike-slip structural belts. Previous studies have had a qualitative understanding of the growth and evolution process of strike-slip faults, but there is still a lack of objective and quantitative basis to determine the evolution degree of strike-slip fault zone. The key is the lack of parameters that can characterize the evolution degree of strike-slip faults. In order to solve this problem, this paper, based on the independent physical simulation experiment of Riedel shear structure, collected plane images and carried out a statistical analysis of fault geometry parameters in strike-slip fault zone. By analyzing the corresponding relationship between the periodic change of plane structure and the change of geometric statistical parameters during the evolution of fault zone, the change law of geometric parameters during the evolution of fault zone is revealed, and a new understanding is proposed that the standard deviation of the angle data between adjacent faults in the same fault zone is taken as the characterization parameter of the evolution degree of strike-slip faults. The main conclusions are as follows: (1) The evolution degree of strike-slip fault zone is significantly related with the standard deviation of the angle data between adjacent faults in fault zone, and the plane structural style in different evolution degrees corresponds to the distribution interval of the standard deviation of the angle data between adjacent faults in fault zone; (2) According to the combination pattern of fault planes, the evolution stage of strike slip fault can be divided into shear unidirectional fracture stage, shear en echelon fracture stage, and shear connected fracture stage, and the corresponding standard deviation (S) of the angle data between adjacent faults in fault zone is 1 < S < 4, 4≤S < 8, and S≥8, respectively; (3) For the actual strike-slip fault zone, the evolution degree of strike-slip faults can be revealed by statistical analysis of the standard deviation of the angle data between adjacent faults in fault zone.
-
图 2 不同性质实验材料的变形状态对比
位置见图 1。
a.含水量约10%时砂体走滑破碎形态;b.干燥砂体走滑破碎形态;c.含水量约5%时砂体走滑破碎形态。Figure 2. Comparison of deformation states of experimental materials of different properties
图 7 顺北5号断裂与顺南2号断裂平面结构分析
统计数据见表 5。
Figure 7. Plane structures of Shunbei No. 5 and Shunnan No. 2 faults
表 1 构造物理模拟实验中断裂带内断裂夹角数据统计结果
Table 1. Statistical results of angle data between adjacent faults in fault zone obtained in structural physical simulation experiment
统计项目 运行时间/s 32 46 56 66 86 116 相邻断裂夹角/(°) 11.97 12.9 15.97 16.01 23.05 33.66 15.60 20.73 7.08 6.29 4.08 23.24 13.68 19.79 6.37 9.02 17.41 10.04 16.87 11.11 16.73 16.73 26.04 23.10 7.69 27.57 17.96 23.16 14.89 17.43 21.22 28.77 28.87 5.02 12.19 35.70 23.15 23.84 26.99 28.31 28.54 36.90 25.10 26.11 42.8 20.51 7.42 18.61 16.09 33.80 32.01 6.55 31.43 9.42 2.41 3.67 36.89 31.73 37.83 34.46 25.21 28.49 标准差 1.86 4.74 7.65 10.09 10.45 11.48 表 2 NAYLOR等[17]开展的构造物理模拟实验中相邻断裂夹角数据统计结果
Table 2. Statistical results of angle data between adjacent faults obtained in the physical simulation experiment conducted by NAYLOR et al.
位移量/ cm 相邻断裂夹角/(°) 8.9 1.21 0.77 0 1.75 0 2.72 1.94 6.84 6.89 5.46 0.75 1.32 2.49 2.88 0 2.32 3.33 3.79 1.76 11.62 9.28 13.3 3.08 5.54 14.62 10.27 12.02 3.95 4.65 10.17 14.26 4.84 2.7 8.91 1.75 5.91 5.27 2.11 2.93 4.94 0.68 2.61 11.21 19.5 0.4 20.51 25.48 13.94 13.99 17.79 15.9 20.83 21.87 18.08 20 20.79 24.87 1.13 1.25 7.53 22.27 18.87 22.23 27.87 12.99 27.2 10.09 18.77 8.39 18.86 25.73 18.83 24.69 22.9 18.61 16.18 15.97 10.04 16.02 5.69 11.69 10.79 30.34 14.83 21.97 31.44 14.83 36 9.48 21.08 9.38 20.95 20.4 20.89 7.39 28.06 17.09 27.12 20.69 8.31 22.32 28.01 16.05 8.39 18.75 22.41 23.09 19.02 26.29 位移量/ cm 相邻断裂夹角/(°) 标准差 8.9 0.26 0 5.25 0 3.04 4.52 2.93 13.3 9.29 2.93 0 2.35 0 10.58 17.51 1.4 7.4 8.61 8.42 7.83 10.37 7.78 3.19 13.3 11.72 6.66 5.1 12.64 4.4 19.5 15.28 26.76 33.86 4.34 9.88 8.39 20.64 24.45 7.65 6.26 7.92 7.12 12.82 2.31 7.96 22.31 14.12 8.34 27.2 15.92 18.01 25.9 11.59 22.27 21.4 23.71 19.37 13.57 7.87 3.94 5.33 21.67 45.18 27.1 5.43 4.86 8.55 36 39.08 16.48 20.03 17.74 42.01 14.75 27.06 14 12.18 11.81 24.46 14.85 35.14 27.74 19.75 26.77 10.22 4.39 2.35 6.09 8.87 表 3 TCHALENKO[18]开展的构造物理模拟实验中相邻断裂夹角数据统计结果
Table 3. Statistical results of angle data between adjacent faults obtained in the physical simulation experiment conducted by TCHALENKO
位移量/cm 相邻断裂夹角/(°) 2.1 1.14 8.64 15.74 3.65 0 1.83 4.14 1.19 1.69 2.8 17.88 17.19 13.78 33.57 21.16 6.82 2.19 22.94 7.09 4.77 13.91 13.06 3.5 16.57 19.93 22.98 1.47 37.77 10.3 35.08 23.46 16.15 23.14 13.94 14.71 20.67 6.19 5.52 18.59 4.9 22.21 24.78 18.91 3.25 9.25 17.19 0 32.37 10.35 36.21 15.98 26.78 32.04 8.45 9.89 12.33 22.11 25.25 6.29 19.64 7 3.04 9.62 12.95 16.52 17.61 31.31 23.91 20.74 19.94 11.86 19.75 10.89 37.1 44 33.23 42.58 23.55 22.47 16.18 6.84 位移量/cm 相邻断裂夹角/(°) 标准差 2.1 4.73 2.8 8.47 3.5 9.47 4.9 19.94 21.09 31.21 18.64 9.44 7 21.81 37.13 26.08 21.18 18.34 30.73 30.46 17.2 15.22 17.85 23.53 18.53 23.13 12.97 21.43 23.77 14.18 29.2 9.18 表 4 走滑断裂演化阶段划分方案及其对应的相邻断裂夹角数据标准差值范围
Table 4. Scheme for dividing the evolution stages of strike slip faults and its corresponding standard deviation range of angle data between adjacent faults
项目 断裂演化阶段 剪切单向破裂阶段 剪切雁列破裂阶段 剪切连通破裂阶段 标准差(S)范围 1<S<4 4≤S<8 S≥8 断裂平面结构 断裂近平行展布,断裂平直 断裂雁列式排列,断裂端点走向弯曲,偏向走滑方向 多条断裂构成连通的主位移带,位移带两侧发育分支断裂 表 5 实例验证中断裂标准差计算结果
Table 5. Calculation results of standard deviation of faults in case study
断裂名称 相邻断裂夹角/(°) 标准差 顺北5号 11.75 1.8 2.64 11.83 13.2 25.92 27.45 10.53 9.08 11.59 15.61 5.53 7.39 14.23 19.4 9.56 0 9.8 4.75 8.38 7.91 6.84 顺南2号 3.79 28.4 18.34 2.05 23.71 1.09 24.85 2.58 9.54 2.09 13.09 7.24 40.9 23.66 48.7 18.76 28.89 28.93 13.68 -
[1] 祁鹏, 任建业, 史双双, 等. 歧口凹陷沿岸带新生代构造特征及其形成机制[J]. 石油学报, 2010, 31(6): 900-905. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201006004.htmQI Peng, REN Jianye, SHI Shuangshuang, et al. Features of the Cenozoic structure of the coastal zone in Qikou Sag and its formation mechanism[J]. Acta Petrolei Sinica, 2010, 31(6): 900-905. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201006004.htm [2] 邬光辉, 陈志勇, 曲泰来, 等. 塔里木盆地走滑带碳酸盐岩断裂相特征及其与油气关系[J]. 地质学报, 2012, 86(2): 219-227. doi: 10.3969/j.issn.0001-5717.2012.02.001WU Guanghui, CHEN Zhiyong, QU Tailai, et al. Characteristics of the strik-slip fault facies in Ordovician carbonate in the Tarim Basin, and its relations to hydrocarbon[J]. Acta Geologica Sinica, 2012, 86(2): 219-227. doi: 10.3969/j.issn.0001-5717.2012.02.001 [3] 杨庚, 陈竹新, 刘银河, 等. 塔里木盆地巴楚隆起北缘吐木休克弧形基底卷入斜向滑移构造[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1209-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201905001.htmYANG Geng, CHEN Zhuxin, LIU Yinhe, et al. A basement-involved structure above oblique-slip Tumuxiuke fault in northern margin of Bachu Uplift in Tarim Basin, Northwest ChinaJournal of Jilin University (Earth Science Edition), 2019, 49(5): 1209-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201905001.htm [4] 马永生, 何治亮, 赵培荣, 等. 深层—超深层碳酸盐岩储层形成机理新进展[J]. 石油学报, 2019, 40(12): 1415-1425. doi: 10.7623/syxb201912001MA Yongsheng, HE Zhiliang, ZHAO Peirong, et al. A new progress in formation mechanism of deep and ultra-deep carbonate reservoir[J]. Acta Petrolei Sinica, 2019, 40(12): 1415-1425. doi: 10.7623/syxb201912001 [5] 管树巍, 姜华, 鲁雪松, 等. 四川盆地中部走滑断裂系统及其控油气作用[J]. 石油学报, 2022, 43(11): 1542-1557. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202211002.htmGUAN Shuwei, JIANG Hua, LU Xuesong, et al. Strike-slip fault system and its control on oil & gas accumulation in central Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(11): 1542-1557. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202211002.htm [6] 陈红汉. 我国大型克拉通叠合盆地的走滑构造与油气聚集研究进展[J]. 地球科学, 2023, 48(6): 2039-2066. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202306001.htmCHEN Honghan. Advances on relationship between strike-slip structures and hydrocarbon accumulations in large superimposed Craton Basins, China[J]. Earth Science, 2023, 48(6): 2039-2066. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202306001.htm [7] 叶慧, 石万忠, 王任, 等. 鄂尔多斯盆地南部玉都走滑断裂带构造特征及其对油气成藏的控制[J]. 地球科学, 2023, 48(6): 2294-2309. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202306016.htmYE Hui, SHI Wanzhong, WANG Ren, et al. Structural characte-ristics of Yudu strike-slip fault zone and their control on hydrocarbon accumulation in southern Ordos Basin[J]. Earth Science, 2023, 48(6): 2294-2309. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202306016.htm [8] 张驰, 储呈林, 徐勤琪, 等. 阿克库勒凸起东南斜坡走滑断裂构造特征及油气地质意义[J/OL]. 地质学报, 2023: 1-13.ZHANG Chi, CHU Chenglin, XU Qinqi, et al. The tectonic characte-ristics of strike-slip faults in southeastern slope of Akkule Uplift and petroleum geological significance[J/OL]. Acta Geologica Sinica, 2023: 1-13. [9] 张威, 杨明慧, 李春堂, 等. 鄂尔多斯盆地大牛地区块板内走滑断裂构造特征及演化[J]. 地球科学, 2023, 48(6): 2267-2280. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202306014.htmZHANG Wei, YANG Minghui, LI Chuntang, et al. Structural characteristics and evolution of intraplate strike-slip faults in Daniudi Block, Ordos Basin. Earth Science, 48(6): 2267-2280. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202306014.htm [10] 胡志伟, 徐长贵, 杨波, 等. 渤海海域断裂对油气优势运移通道的影响及其控藏类型[J]. 地质科技情报, 2017(3): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703007.htmHU Zhiwei, XU Changgui, YANG Bo, et al. Influences of faults on the petroleum dominant migration pathway and its controlling reservoir types in the Bohai rea[J]. Geological Science and Technology Information, 2017(3): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703007.htm [11] 邓尚, 刘雨晴, 刘军, 等. 克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义: 以塔里木盆地顺北地区为例[J]. 大地构造与成矿学, 2021, 45(6): 1111-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202106003.htmDENG Shang, LIU Yuqing, LIU Jun, et al. Structural styles and evolution models of intracratonic strike-slip faults and the implications for reservoir exploration and appraisal: case study of the Shunbei, Tarim Basin[J]. Geotectonica et Metallogenia, 2021, 45(6): 1111-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202106003.htm [12] 张钰, 曹自成, 陈红汉, 等. 顺北地区不同走滑断裂带奥陶系油气成藏期次及其贡献度差异性[J]. 地球科学, 2023, 48(6): 2168-2188. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202306008.htmZHANG Yu, CAO Zicheng, CHEN Honghan, et al. Difference of hydrocarbon charging events and their contribution percentages to reservoirs among strike-slip fault belts in Shunbei, Tarim Basin[J]. Earth Science, 2023, 48(6): 2168-2188. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202306008.htm [13] 张婧, 李伟, 吴智平, 等. 郯庐断裂带渤南段构造特征及其控盆作用[J]. 地球科学, 2017, 42(9): 1549-1564. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201709009.htmZHANG Jing, LI Wei, WU Zhiping, et al. Structural characteristics of Tan-Lu fault zone in south area of Bohai Sea and its control on basin structure[J]. Earth Science, 2017, 42(9): 1549-1564. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201709009.htm [14] 张正涛, 林畅松, 李慧勇, 等. 渤海湾盆地沙垒田地区新近纪走滑断裂发育特征及其对油气富集的控制作用[J]. 石油与天然气地质, 2019, 40(4): 778-788. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201904009.htmZHANG Zhengtao, LIN Changsong, LI Huiyong, et al. Characte-ristics of the Neogene strike-slip faults and their controls on hydrocarbon accumulation in Shaleitian Uplift, Bohai Bay Basin[J]. Oil & Gas Geology, 2019, 40(4): 778-788. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201904009.htm [15] 李洪奎, 禚传源, 耿科, 等. 郯—庐断裂带陆内伸展构造: 以沂沭断裂带的表现特征为例[J]. 地学前缘, 2017, 24(2): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201702013.htmLI Hongkui, ZHUO Chuanyuan, GENG Ke, et al. Intra-continental extensional tectonics of the Tan-Lu fault zone: an example from the appearance characteristics of the Yishu fault zone[J]. Earth Science Frontiers, 2017, 24(2): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201702013.htm [16] 周铂文, 陈红汉, 云露, 等. 塔里木盆地顺北地区下古生界走滑断裂带断距分段差异与断层宽度关系[J]. 地球科学, 2022, 47(2): 437-451. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202202004.htmZHOU Bowen, CHEN Honghan, YUN Lu, et al. The relationship between fault displacement and damage zone width of the Paleozoic strike-slip faults in Shunbei, Tarim Basin[J]. Earth Science, 2022, 47(2): 437-451. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202202004.htm [17] NAYLOR M A, MANDL G, SPESTEIJN C H K. Fault geometries in basement-induced wrench faulting under different initial stress states[J]. Journal of Structural Geology, 1986, 8: 737-752. [18] TCHALENKO J S. Similarities between shear zones of different magnitudes[J]. Geological Society of America Bulletin, 1970, 81: 1625-16. [19] SCHREURS G, COLLETTA B. Analogue modelling of continental transpression[J]. Journal of the Virtual Explorer, 200, 7: 103-114. [20] DOOLEY T. Analogue modelling of intraplate strike-slip tectonics: review and new experimental results[J]. Tectonophysics, 2012, 5745751-71. [21] 肖阳, 邬光辉, 雷永良, 等. 走滑断裂带贯穿过程与发育模式的物理模拟[J]. 石油勘探与开发, 2017, 44(3): 340-348. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201703004.htmXIAO Yang, WU Guanghui, LEI Yongliang, et al. Analogue modeling of through-going process and development pattern of strike-slip fault zone[J]. Petroleum Exploration and Development, 2017, 44(3): 340-348. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201703004.htm [22] 黄诚. 叠合盆地内部小尺度走滑断裂幕式活动特征及期次判别以塔里木盆地顺北地区为例[J]. 石油实验地质, 2019, 41(3): 379-389. doi: 10.11781/sysydz201903379HUANG Cheng. Multi-stage activity characteristics of small-scale strike-slip faultsin superimposed basin and its identification method: a case study of Shunbei, Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41(3): 379-389. doi: 10.11781/sysydz201903379 [23] 张红波, 周雨双, 沙旭光, 等. 塔里木盆地顺北5号走滑断裂隆起段发育特征与演化机制[J]. 石油与天然气地质, 2023, 44(2): 321-334. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202302006.htmZHANG Hongbo, ZHOU Yushuang, SHA Xuguang, et al. Deve-lopment characteristics and evolution mechanism of the uplifted segment of the No. 5 strike-slip fault zone in Shunbei, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(2): 321-334. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202302006.htm [24] 林波, 云露, 李海英, 等. 塔里木盆地顺北5号走滑断层空间结构及其油气关系[J]. 石油与天然气地质, 2021, 42(6): 1344-1353. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106009.htmLIN Bo, YUN Lu, LI Haiying, et al. Spatial structure of Shunbei No. 5 strike-slip fault and its relationship with oil and gas reservoirs in the Tarim Basin[J]. Oil & Gas Geology, 2021, 42(6): 1344-1353. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106009.htm [25] 云露, 邓尚. 塔里木盆地深层走滑断裂差异变形与控储控藏特征以顺北油气田为例[J]. 石油学报, 2022, 43(6): 770-787. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202206003.htmYUN Lu, DENG Shang. Structural styles of deep strike-slip faults in Taim Basin and the characteristics of their control on reservoir formation and hydrocarbon accumulation: a case study of Shunbei oil and gas field[J]. Acta Petrolei Sinica, 2022, 43(6): 770-787. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202206003.htm [26] 吴鲜, 李丹, 朱秀香, 等. 塔里木盆地顺北油气田地温场对奥陶系超深层油气的影响以顺北5号走滑断裂带为例[J]. 石油实验地质, 2022, 44(3): 402-412. doi: 10.11781/sysydz202203402WU Xian, LI Dan, ZHU Xiuxiang, et al. Influence of geothermal field on ultra-deep Ordovician oil and gas in Shunbei field, Tarim Basin: a case study of Shunbei No. 5 strike-slip fault[J]. Petroleum Geology & Experiment, 2022, 44(3): 402-412. . doi: 10.11781/sysydz202203402 [27] DENG Shang, LI Huili, ZHANG Zhongpei, et al. Structural characte-rization of intracratonic strike-slip faults in the central Tarim Basin[J]. AAPG Bulletin, 201, 103(1): 109-137. [28] 孔永吉, 吴孔友, 刘寅. 塔里木盆地顺南地区走滑断裂发育特征及演化[J]. 地质与资源, 2020, 29(5): 446-453. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202005006.htmKONG Yongji, WU Kongyou, LIU Yin. Development and evolution of the strike-slip faults in Shunnan, Tarim Basin[J]. Geology and Resources, 2020, 29(5): 446-453. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202005006.htm [29] 甄素静, 汤良杰, 李宗杰, 等. 塔中北坡顺南地区走滑断裂样式、变形机理及石油地质意义[J]. 天然气地球科学, 2015, 26(12): 2315-2324. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201512012.htmZHEN Sujing, TANG Liangjie, LI Zongjie, et al. The characteristics, formation and peroleum geology significance of the strike-slip fault system in Shunnan, northern slope of Tazhong Uplift[J]. Natual Gas Geoscience, 2015, 26(12): 2315-2324. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201512012.htm [30] 吕海涛, 韩俊, 张继标, 等. 塔里木盆地顺北地区超深碳酸盐岩断溶体发育特征与形成机制[J]. 石油实验地质, 2021, 43(1): 14-22. doi: 10.11781/sysydz202101014LÜ Haitao, HAN Jun, ZHANG Jibiao, et al. Development characteristics and formation mechanism of ultra-deep carbonate fault-dissolution body in Shunbei, Tarim Basin[J]. Petroleum Geology & Experiment, 2021, 43(1): 14-22. doi: 10.11781/sysydz202101014