留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

页岩自封闭性与页岩气保存的微观机理研究

郭旭升 胡东风 俞凌杰 卢龙飞 何陈诚 刘伟新 陆现彩

郭旭升, 胡东风, 俞凌杰, 卢龙飞, 何陈诚, 刘伟新, 陆现彩. 页岩自封闭性与页岩气保存的微观机理研究[J]. 石油实验地质, 2023, 45(5): 821-831. doi: 10.11781/sysydz202305821
引用本文: 郭旭升, 胡东风, 俞凌杰, 卢龙飞, 何陈诚, 刘伟新, 陆现彩. 页岩自封闭性与页岩气保存的微观机理研究[J]. 石油实验地质, 2023, 45(5): 821-831. doi: 10.11781/sysydz202305821
GUO Xusheng, HU Dongfeng, YU Lingjie, LU Longfei, HE Chencheng, LIU Weixin, LU Xiancai. Study on the micro mechanism of shale self-sealing and shale gas preservation[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(5): 821-831. doi: 10.11781/sysydz202305821
Citation: GUO Xusheng, HU Dongfeng, YU Lingjie, LU Longfei, HE Chencheng, LIU Weixin, LU Xiancai. Study on the micro mechanism of shale self-sealing and shale gas preservation[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(5): 821-831. doi: 10.11781/sysydz202305821

页岩自封闭性与页岩气保存的微观机理研究

doi: 10.11781/sysydz202305821
基金项目: 

国家自然科学基金企业创新发展联合基金 U19B6003-03-06

国家自然科学基金企业创新发展联合基金 U19B6003-03-03

详细信息
    作者简介:

    郭旭升(1965-), 男, 中国工程院院士, 本刊主编, 从事油气勘探研究与生产管理工作。E-mail: guoxs@sinopec.com

  • 中图分类号: TE122.2

Study on the micro mechanism of shale self-sealing and shale gas preservation

  • 摘要: 为加快页岩气的勘探开发,围绕页岩自封闭性阐述了页岩气保存的微观机理。页岩层系的自封闭能力主要与其纳米喉道为主的低连通性、束缚水赋存引起的低速扩散和毛细管力封闭、埋藏条件下沿层方向的突破压力有关。基于页岩孔隙形态以及连通性分析表明,页岩有机孔以纳米喉道为主,连通性差且具有明显的滞留效应,同时顶、底板及页岩层系内部多套相对致密的封隔层叠置,有利于形成纵向自封闭。结合束缚水对基质孔隙流动能力及突破压力的实验和分子动力学模拟分析,揭示束缚水赋存使得页岩基质孔隙有效扩散能力显著下降,并可形成高的毛细管力,从而对储集于有机孔隙中的气体形成有效封闭。研究中构建了渗透率—突破压力演化关系,揭示深埋条件下页岩沿层方向层理缝有效闭合可形成高的突破压力封闭,抬升阶段相对弱的挤压环境沿层方向仍可以保持较高的封闭能力,有利于页岩气保存;而强挤压改造导致层理缝开启并沟通开启性断裂面,导致保存能力失效并使得页岩气发生较大规模的散失。该研究利用实验和分子动力学模拟等手段获取的认识,进一步阐述了页岩气保存的微观机理,可为复杂构造区海相页岩气勘探提供指导。

     

  • 图  1  川东南地区志留系龙马溪组页岩氮气吸附—脱附曲线

    Figure  1.  Nitrogen adsorption and desorption curves of shale in Silurian Longmaxi Formation, southeastern Sichuan Basin

    图  2  川东南地区志留系龙马溪组页岩扫描电镜照片

    a.椭圆状次生有机质孔隙,丁页4井;b.团簇状次生有机质孔隙,东页深3井;c.不规则状微—介孔有机质孔隙大量发育,普顺1井;d. 狭缝形有机质—黏土矿物孔。

    Figure  2.  SEM photos of shale in Silurian Longmaxi Formation, southeastern Sichuan Basin

    图  3  川东南地区志留系龙马溪组页岩氮气吸附孔径分布

    Figure  3.  Pore size distribution of shale in Silurian Longmaxi Formation, southeastern Sichuan Basin

    图  4  川东南D1井奥陶系五峰组—志留系龙马溪组页岩气测井曲线与异常压力封存箱

    据参考文献[34]修改。

    Figure  4.  Logs and abnormally pressured compartments of shale gas in Ordovician Wufeng-Silurian Longmaxi formations of well D1, southeastern Sichuan Basin

    图  5  不同湿度含水条件对四川盆地志留系龙马溪组页岩扩散参数的影响

    Figure  5.  Influence of humidity and water content conditions on diffusion parameters of shale in Silurian Longmaxi Formation, Sichuan Basin

    图  6  基于分子动力学模拟获取的两种孔喉模型对应的突破压力曲线

    Figure  6.  Breakthrough pressure curves corresponding to two pore throat models obtained by molecular dynamics simulation

    图  7  川东南地区FB1井页岩接触角纵向分布

    Figure  7.  Longitudinal distribution of shale contact angles of well FB1, southeastern Sichuan Basin

    图  8  TEM表征川东南地区FB1井志留系龙马溪组页岩有机质石墨化程度

    Figure  8.  TEM characterization of graphitization degree of organic matter in shale in Silurian Longmaxi Formation of well FB1, southeastern Sichuan Basin

    图  9  四川盆地志留系龙马溪组页岩渗透率—突破压力关系曲线

    Figure  9.  Permeability-breakthrough pressure relationship curves of shale in Silurian Longmaxi Formation of Sichuan Basin

    图  10  不同水平挤压应力条件下四川盆地志留系龙马溪组页岩沿层方向突破压力演化特征

    Figure  10.  Changes of breakthrough pressure of shale in Silurian Longmaxi Formation of Sichuan Basin under different horizontal tectonic compression

  • [1] 马永生, 黎茂稳, 蔡勋育, 等. 中国海相深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题[J]. 石油与天然气地质, 2020, 41(4): 655-672. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004002.htm

    MA Yongsheng, LI Maowen, CAI Xunyu, et al. Mechanisms and exploitation of deep marine petroleum accumulations in China: advances, technological bottlenecks and basic scientific problems[J]. Oil & Gas Geology, 2020, 41(4): 655-672. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004002.htm
    [2] 郭旭升. 南方海相页岩气"二元富集"规律: 四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7): 1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htm

    GUO Xusheng. Rules of two-factor enrichiment for marine shale gas in Southern China: understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htm
    [3] 郭旭升, 胡东风, 李宇平, 等. 涪陵页岩气田富集高产主控地质因素[J]. 石油勘探与开发, 2017, 44(4): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704002.htm

    GUO Xusheng, HU Dongfeng, LI Yuping, et al. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field[J]. Petroleum Exploration and Development, 2017, 44(4): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704002.htm
    [4] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2): 166-178. doi: 10.11698/PED.2016.02.02

    ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: characteristics, challenges and prospects (Ⅱ)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178. doi: 10.11698/PED.2016.02.02
    [5] 王鹏万, 焦鹏飞, 贺训云, 等. 昭通示范区太阳—海坝浅层页岩气富集模式[J]. 中国石油大学学报(自然科学版), 2023, 47(3): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202303005.htm

    WANG Pengwan, JIAO Pengfei, HE Xunyun, et al. Shallow shale gas enrichment model of Taiyang-Haiba in Zhaotong demonstration area[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(3): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202303005.htm
    [6] 张金川, 陶佳, 李振, 等. 中国深层页岩气资源前景和勘探潜力[J]. 天然气工业, 2021, 41(1): 15-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101003.htm

    ZHANG Jinchuan, TAO Jia, LI Zhen, et al. Prospect of deep shale gas resources in China[J]. Natural Gas Industry, 2021, 41(1): 15-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101003.htm
    [7] 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm

    MA Yongsheng, CAI Xunyu, ZHAO Peirong. China's shale gas exploration and development: understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm
    [8] 何治亮, 聂海宽, 胡东风, 等. 深层页岩气有效开发中的地质问题: 以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报, 2020, 41(4): 379-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004003.htm

    HE Zhiliang, NIE Haikuan, HU Dongfeng, et al. Geological problems in the effective development of deep shale gas: a case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2020, 41(4): 379-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004003.htm
    [9] 聂海宽, 李沛, 党伟, 等. 四川盆地及周缘奥陶系—志留系深层页岩气富集特征与勘探方向[J]. 石油勘探与开发, 2022, 49(4): 648-659. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202204003.htm

    NIE Haikuan, LI Pei, DANG Wei, et al. Enrichment characteristics and exploration directions of deep shale gas of Ordovician-Silurian in the Sichuan Basin and its surrounding areas, China[J]. Petroleum Exploration and Development, 2022, 49(4): 648-659. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202204003.htm
    [10] 刘树根, 邓宾, 钟勇, 等. 四川盆地及周缘下古生界页岩气深埋藏—强改造独特地质作用[J]. 地学前缘, 2016, 23(1): 11-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601004.htm

    LIU Shugen, DENG Bin, ZHONG Yong, et al. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2016, 23(1): 11-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601004.htm
    [11] 孙博, 邓宾, 刘树根, 等. 多期叠加构造变形与页岩气保存条件的相关性: 以川东南焦石坝地区为例[J]. 成都理工大学学报(自然科学版), 2018, 45(1): 109-120. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201801009.htm

    SUN Bo, DENG Bin, LIU Shugen, et al. Discussion on correlation between multistage superimposed tectonic deformation and shale gas preservation conditions in the Jiaoshiba shale-gas field, Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2018, 45(1): 109-120. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201801009.htm
    [12] 姜振学, 宋岩, 唐相路, 等. 中国南方海相页岩气差异富集的控制因素[J]. 石油勘探与开发, 2020, 47(3): 617-628. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003020.htm

    JIANG Zhenxue, SONG Yan, TANG Xianglu, et al. Controlling factors of marine shale gas differential enrichment in Southern China[J]. Petroleum Exploration and Development, 2020, 47(3): 617-628. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003020.htm
    [13] 胡东风, 张汉荣, 倪楷, 等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业, 2014, 34(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htm

    HU Dongfeng, ZHANG Hanrong, NI Kai, et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htm
    [14] 庞河清, 熊亮, 魏力民, 等. 川南深层页岩气富集高产主要地质因素分析: 以威荣页岩气田为例[J]. 天然气工业, 2019, 39(S1): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2019S1014.htm

    PANG Heqing, XIONG Liang, WEI Limin, et al. Analysis of main geological factors for high yield and enrichment of deep shale gas in southern Sichuan: taking Weirong shale gas field as an example[J]. Natural Gas Industry, 2019, 39(S1): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2019S1014.htm
    [15] 何治亮, 胡宗全, 聂海宽, 等. 四川盆地五峰组—龙马溪组页岩气富集特征与"建造—改造"评价思路[J]. 天然气地球科学, 2017, 28(5): 724-733. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201705007.htm

    HE Zhiliang, HU Zongquan, NIE Haikuan, et al. Characterization of shale gas enrichment in the Wufeng-Longmaxi formation in the Sichuan Basin and its evaluation of geological construction-transformation evolution sequence[J]. Natural Gas Geoscience, 2017, 28(5): 724-733. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201705007.htm
    [16] 邹才能, 杨智, 何东博, 等. 常规—非常规天然气理论、技术及前景[J]. 石油勘探与开发, 2018, 45(4): 575-587. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804005.htm

    ZOU Caineng, YANG Zhi, HE Dongbo, et al. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 2018, 45(4): 575-587. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804005.htm
    [17] 贾承造, 庞雄奇, 宋岩. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力[J]. 石油勘探与开发, 2021, 48(3): 437-452. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103001.htm

    JIA Chengzao, PANG Xiongqi, SONG Yan. The mechanism of unconventional hydrocarbon formation: hydrocarbon self-containment and intermolecular forces[J]. Petroleum Exploration and Development, 2021, 48(3): 437-452. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103001.htm
    [18] AMANN-HILDENBRAND A, BERTIER P, BUSCH A, et al. Experimental investigation of the sealing capacity of generic clay-rich caprocks[J]. International Journal of Greenhouse Gas Control, 2013, 19: 620-641.
    [19] TANG Ling, SONG Yan, JIANG Shu, et al. Sealing mechanism of the roof and floor for the Wufeng-Longmaxi shale gas in the southern Sichuan Basin[J]. Energy & Fuels, 2020, 34(6): 6999-7018.
    [20] ZHANG Kun, SONG Yan, JIA Chengzao, et al. Formation mechanism of the sealing capacity of the roof and floor strata of marine organic-rich shale and shale itself, and its influence on the characteristics of shale gas and organic matter pore development[J]. Marine and Petroleum Geology, 2022, 140. DOI: 10.1016/j.marpetgeo.2022.105647.
    [21] 胡文瑄, 陆现彩, 范明, 等. 泥页岩盖层研究进展: 类型、微孔特征与封盖机理[J]. 矿物岩石地球化学通报, 2019, 38(5): 885-896. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201905003.htm

    HU Wenxuan, LU Xiancai, FAN Ming, et al. Advances in the research of shale caprocks: type, micropore characteristics and sealing mechanisms[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(5): 885-896. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201905003.htm
    [22] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069.
    [23] SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619.
    [24] 陈尚斌, 朱炎铭, 王红岩, 等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报, 2012, 37(3): 438-444. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201203015.htm

    CHEN Shangbin, ZHU Yanming, WANG Hongyan, et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of China Coal Society, 2012, 37(3): 438-444. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201203015.htm
    [25] 杨锐. 鄂西渝东地区五峰组—龙马溪组页岩孔隙结构与连通孔隙流体示踪[D]. 武汉: 中国地质大学, 2018.

    YANG Rui. Pore structure and tracer-containing fluid migration in connected pores of Wufeng and Longmaxi shales from western Hubei and eastern Chongqing regions[D]. Wuhan: China University of Geosciences, 2018.
    [26] SUN Mengdi, YU Bingsong, HU Qinhong, et al. Pore characteristics of Longmaxi shale gas reservoir in the northwest of Guizhou, China: investigations using small-angle neutron scattering (SANS), helium pycnometry, and gas sorption isotherm[J]. International Journal of Coal Geology, 2017, 171: 61-68.
    [27] HU Qinhong, EWING R P, DULTZ S. Low pore connectivity in natural rock[J]. Journal of Contaminant Hydrology, 2012, 133: 76-83.
    [28] 高之业, 姜振学, 胡钦红. 利用自发渗吸法和高压压汞法定量评价页岩基质孔隙连通性[C]//中国矿物岩石地球化学学会第15届学术年会论文摘要集(4). 长春: 中国矿物岩石地球化学学会, 2015: 152-153.

    GAO Zhiye, JIANG Zhenxue, HU Qinhong. Quantitative evaluation of pore connectivity in shale matrix using spontaneous infiltration and high-pressure mercury intrusion methods[C]//Summary of papers at the 15th Academic Annual Meeting of the Chinese Society of Mineral and Rock Geochemistry (4). Changchun: Chinese Society for Mineralogy, Petrology and Geochemistry, 2015: 152-153.
    [29] 宋岩, 李卓, 姜振学, 等. 中国南方海相页岩气保存机理及模式[J/OL]. 地质学报, 2023: 1-16. (2023-02-16). https://doi.org/10.19762/j.cnki.dizhixuebao.2023202.

    SONG Yan, LI Zhuo, JIANG Zhenxue, et al. Preservation mechanism and model of marine shale gas in Southern China[J/OL]. Acta Geologica Sinica, 2023: 1-16. (2023-02-16). https://doi.org/10.19762/j.cnki.dizhixuebao.2023202.
    [30] ROSS D J K, BUSTIN R M. Shale gas potential of the Lower Jurassic gordondale member, northeastern British Columbia, Canada[J]. Bulletin of Canadian Petroleum Geology, 2007, 55(1): 51-75.
    [31] 张雪芬, 陆现彩, 张林晔, 等. 页岩气的赋存形式研究及其石油地质意义[J]. 地球科学进展, 2010, 25(6): 597-604. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201006005.htm

    ZHANG Xuefen, LU Xiancai, ZHANG Linye, et al. Occurrences of shale gas and their petroleum geological significance[J]. Advances in Earth Science, 2010, 25(6): 597-604. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201006005.htm
    [32] 张守庆. 四川盆地超深层盖层动态演化评价[D]. 北京: 中国石油大学(北京), 2021.

    ZHANG Shouqing. Evaluation on the dynamic evolution of ultra-deep caprock in Sichuan Basin[D]. Beijing: China University of Petroleum (Beijing), 2021.
    [33] 柴方园, 李飞. 下扬子中部地区志留系盖层封盖性研究[J]. 非常规油气, 2018, 5(6): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201806003.htm

    CHAI Fangyuan, LI Fei. Study on the capping of Silurian cap rocks from the central part of the Lower Yangtze region[J]. Unconventional Oil & Gas, 2018, 5(6): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201806003.htm
    [34] 刘伟新, 卢龙飞, 叶德燎, 等. 川东南地区奥陶系五峰组—志留系龙马溪组页岩气异常压力封存箱剖析与形成机制[J]. 石油实验地质, 2022, 44(5): 804-814. doi: 10.11781/sysydz202205804

    LIU Weixin, LU Longfei, YE Deliao, et al. Significance and formation mechanism of abnormally pressured compartments of shale gas in the Ordovician Wufeng-Silurian Longmaxi formations, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(5): 804-814. doi: 10.11781/sysydz202205804
    [35] SAKHAEE-POUR A, BRYANT S L. Pore structure of shale[J]. Fuel, 2015, 143: 467-475.
    [36] 刘洪林, 王红岩. 中国南方海相页岩超低含水饱和度特征及超压核心区选择指标[J]. 天然气工业, 2013, 33(7): 140-144. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201307032.htm

    LIU Honglin, WANG Hongyan. Ultra-low water saturation characte-ristics and the identification of over-pressured play fairways of marine shales in South China[J]. Natural Gas Industry, 2013, 33(7): 140-144. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201307032.htm
    [37] 方朝合, 黄志龙, 王巧智, 等. 富含气页岩储层超低含水饱和度成因及意义[J]. 天然气地球科学, 2014, 25(3): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201403021.htm

    FANG Chaohe, HUANG Zhilong, WANG Qiaozhi, et al. Cause and significance of the ultra-low water saturation in gas-enriched shale reservoir[J]. Natural Gas Geoscience, 2014, 25(3): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201403021.htm
    [38] ZHANG Chunliang, TALANDIER J. Self-sealing of fractures in indurated claystones measured by water and gas flow[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(1): 227-238.
    [39] GU Xin, MILDNER D F R, COLE D R, et al. Quantification of organic porosity and water accessibility in marcellus shale using neutron scattering[J]. Energy & Fuels, 2016, 30(6): 4438-4449.
    [40] LI Jing, LI Xiangfeng, WU Keliu, et al. Water sorption and distribution characteristics in clay and shale: effect of surface force[J]. Energy & Fuels, 2016, 30(11): 8863-8874.
    [41] LI Junqian, WANG Siyuan, LU Shuangfang, et al. Microdistribution and mobility of water in gas shale: a theoretical and experimental study[J]. Marine and Petroleum Geology, 2019, 102: 496-507.
    [42] SHEN Yinghao, GE Hongkui, MENG Mianmo, et al. Effect of water imbibition on shale permeability and its influence on gas production[J]. Energy & Fuels, 2017, 31(5): 4973-4980.
    [43] TAN Yuling, ZHANG Songhang, TANG Shuheng, et al. Impact of water saturation on gas permeability in shale: experimental and modelling[J]. Journal of Natural Gas Science and Engineering, 2021, 95: 104062.
    [44] TANG Xu, LI Zhiqiang, RIPEPI N, et al. Temperature-dependent diffusion process of methane through dry crushed coal[J]. Journal of Natural Gas Science and Engineering, 2015, 22: 609-617.
    [45] YUAN Weina, PAN Zhejun, LI Xiao, et al. Experimental study and modelling of methane adsorption and diffusion in shale[J]. Fuel, 2014, 117: 509-519.
    [46] SHEN Weijun, LI Xizhe, LU Xiaobing, et al. Experimental study and isotherm models of water vapor adsorption in shale rocks[J]. Journal of Natural Gas Science and Engineering, 2018, 52: 484-491.
    [47] ZOLFAGHARI A, DEHGHANPOUR H, HOLYK J. Water sorption behaviour of gas shales: I. Role of clays[J]. International Journal of Coal Geology, 2017, 179: 130-138.
    [48] 范雨辰, 陈磊, 刘可禹, 等. 储层润湿性及孔隙水赋存对页岩储集空间的影响[J]. 中南大学学报(自然科学版), 2022, 53(9): 3575-3589. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202209022.htm

    FAN Yuchen, CHEN Lei, LIU Keyu, et al. Effects of wettability and pore water occurrence of gas storage space of shale reservoirs[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3575-3589. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202209022.htm
    [49] 俞凌杰, 刘可禹, 范明, 等. 页岩孔隙中气—水赋存特征研究: 以川东南地区下志留统龙马溪组为例[J]. 石油实验地质, 2021, 43(6): 1089-1096. doi: 10.11781/sysydz2021061089

    YU Lingjie, LIU Keyu, FAN Ming, et al. Co-occurring characte-ristics of pore gas and water in shales: a case study of the Lower Silurian Longmaxi Formation in the southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(6): 1089-1096. doi: 10.11781/sysydz2021061089
    [50] 刘向君, 熊健, 梁利喜, 等. 川南地区龙马溪组页岩润湿性分析及影响讨论[J]. 天然气地球科学, 2014, 25(10): 1644-1652. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201410021.htm

    LIU Xiangjun, XIONG Jian, LIANG Lixi, et al. Analysis of the wettability of Longmaxi Formation shale in the south region of Sichuan Basin and its influence[J]. Natural Gas Geoscience, 2014, 25(10): 1644-1652. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201410021.htm
    [51] 郭建春, 陶亮, 陈迟, 等. 川南地区龙马溪组页岩混合润湿性评价新方法[J]. 石油学报, 2020, 41(2): 216-225. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202002009.htm

    GUO Jianchun, TAO Liang, CHEN Chi, et al. A new method for evaluating the mixed wettability of shale in Longmaxi Formation in the southern Sichuan[J]. Acta Petrolei Sinica, 2020, 41(2): 216-225. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202002009.htm
    [52] 王玉满, 李新景, 陈波, 等. 海相页岩有机质炭化的热成熟度下限及勘探风险[J]. 石油勘探与开发, 2018, 45(3): 385-395. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803004.htm

    WANG Yuman, LI Xinjing, CHEN Bo, et al. Lower limit of thermal maturity for the carbonization of organic matter in marine shale and its exploration risk[J]. Petroleum Exploration and Development, 2018, 45(3): 385-395. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803004.htm
    [53] 张成林, 赵圣贤, 张鉴, 等. 川南地区深层页岩气富集条件差异分析与启示[J]. 天然气地球科学, 2021, 32(2): 248-261. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202102008.htm

    ZHANG Chenglin, ZHAO Shengxian, ZHANG Jian, et al. Analysis and enlightenment of the difference of enrichment conditions for deep shale gas in southern Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(2): 248-261. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202102008.htm
    [54] 徐政语, 梁兴, 鲁慧丽, 等. 四川盆地南缘昭通页岩气示范区构造变形特征及页岩气保存条件[J]. 天然气工业, 2019, 39(10): 22-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201910003.htm

    XU Zhengyu, LIANG Xing, LU Huili, et al. Structural deformation characteristics and shale gas preservation conditions in the Zhaotong national shale gas demonstration area along the southern margin of the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(10): 22-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201910003.htm
    [55] 苏海琨, 聂海宽, 郭少斌, 等. 深层页岩含气量评价及其差异变化: 以四川盆地威荣、永川页岩气田为例[J]. 石油实验地质, 2022, 44(5): 815-824. doi: 10.11781/sysydz202205815

    SU Haikun, NIE Haikuan, GUO Shaobin, et al. Shale gas content evaluation for deep strata and its variation: a case study of Weirong, Yongchuan gas fields in Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(5): 815-824. doi: 10.11781/sysydz202205815
    [56] 魏祥峰, 李宇平, 魏志红, 等. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制[J]. 石油实验地质, 2017, 39(2): 147-153. doi: 10.11781/sysydz201702147

    WEI Xiangfeng, LI Yuping, WEI Zhihong, et al. Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2017, 39(2): 147-153. doi: 10.11781/sysydz201702147
    [57] 邱楠生, 冯乾乾, 腾格尔, 等. 川东南丁山地区燕山期—喜马拉雅期差异构造—热演化与页岩气保存[J]. 石油学报, 2020, 41(12): 1610-1622. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202012013.htm

    QIU Nansheng, FENG Qianqian, BORJIGIN Tenger, et al. Yanshanian- Himalayan differential tectono-thermal evolution and shale gas preservation in Dingshan area, southeastern Sichuan Basin[J]. Acta Petrolei Sinica, 2020, 41(12): 1610-1622. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202012013.htm
    [58] YANG Wei, WANG Yaohua, DU Wei. Behavior of organic matter-hosted pores within shale gas reservoirs in response to differential tectonic deformation: potential mechanisms and innovative conceptual models[J]. Journal of Natural Gas Science and Engineering, 2022, 102: 104571.
    [59] 袁玉松, 刘俊新, 周雁. 泥页岩脆—延转化带及其在页岩气勘探中的意义[J]. 石油与天然气地质, 2018, 39(5): 899-906. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805006.htm

    YUAN Yusong, LIU Junxin, ZHOU Yan. Brittle-ductile transition zone of shale and its implications in shale gas exploration[J]. Oil & Gas Geology, 2018, 39(5): 899-906. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805006.htm
    [60] 袁玉松, 方志雄, 何希鹏, 等. 彭水及邻区龙马溪组页岩气常压形成机制[J]. 油气藏评价与开发, 2020, 10(1): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202001003.htm

    YUAN Yusong, FANG Zhixiong, HE Xipeng, et al. Normal pressure formation mechanism of Longmaxi shale gas in Pengshui and its adjacent areas[J]. Reservoir Evaluation and Development, 2020, 10(1): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202001003.htm
  • 加载中
图(10)
计量
  • 文章访问数:  1028
  • HTML全文浏览量:  427
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-19
  • 修回日期:  2023-09-08
  • 刊出日期:  2023-09-28

目录

    /

    返回文章
    返回