Molecular carbon isotopic geochemistry records of thermal cracking in the palaeo-reservoir of well Shunnan 1 in Guchengxu Uplift, Tarim Basin
-
摘要: 塔里木盆地古城墟隆起顺南1井高成熟度轻质原油被认为是典型的热裂解残余油。研究揭示顺南1井原油中高丰度的苯系物和丰富的稠环芳烃,是其在地质历史上经历强烈热裂解的次生产物之一;苯系物应为热裂解、环化、芳构化过程的中间产物,而稠环芳烃可能指示了缩聚过程。烃类分子裂解—缩聚过程诱发的碳同位素分馏,不仅使顺南1井原油正构烷烃分子碳同位素较下古生界含油气系统中正常原油的重8‰~10‰,而且烷基萘系物分子碳同位素也比下古生界含油气系统中的正常原油重6‰~8‰。研究结果进一步实证了与裂解成因相关的芳烃分子及其稳定碳同位素组成是判识深层—超深层油藏是否经历热蚀变的有效手段,其对于准确评估深层—超深层油气相态与资源格局具有重要意义。Abstract: The highly mature light oil from well Shunnan 1 in the Guchengxu Uplift, Tarim Basin is considered to be a typical residual oil by thermal cracking. The study reveals that the abundant monoaromatic hydrocarbons and polynuclear aromatics in the crude oil of well Shunnan 1 are the by-products of severe in-reservoir oil-cracking during the geological history. The monoaromatic hydrocarbons are the intermediate products of thermal cracking, cyclization and aromatization, while the polynuclear aromatics are indicative of polycondensation reaction. The strong carbon isotopic fractionation induced by hydrocarbon molecule cracking and polycondensation makes the molecule carbon isotope of n-alkanes and the molecule carbon isotope of alkyl naphthalenes in the crude oil of well Shunnan 1 respectively 8‰-10‰ and 6‰-8‰ heavier compared to those from unaltered crude oils in Lower Paleozoic oil-bearing system. The results further proved that the aromatic molecules related to oil cracking and their stable carbon isotopic compositions could be a potentially powerful tool to identify whether thermal alteration occurred in deep and ultra-deep oil reservoirs, and further helps to effectively evaluate the oil and gas phase and resource pattern in the deep and ultra-deep reservoirs.
-
图 1 塔里木盆地古城墟隆起顺南1井所处构造地理位置
据沙旭光等[3]修改。
Figure 1. Structural location of well Shunnan 1 in Guchengxu Uplift, Tarim Basin
-
[1] 马庆佑, 沙旭光, 李玉兰, 等. 塔中顺托果勒区块走滑断裂特征及控油作用[J]. 石油实验地质, 2012, 34(2): 120-124. doi: 10.3969/j.issn.1001-6112.2012.02.003MA Qingyou, SHA Xuguang, LI Yulan, et al. Characteristics of strike-slip fault and its controlling on oil in Shuntuoguole region, middle Tarim Basin[J]. Petroleum Geology & Experiment, 2012, 34(2): 120-124. doi: 10.3969/j.issn.1001-6112.2012.02.003 [2] 云露, 曹自成. 塔里木盆地顺南地区奥陶系油气富集与勘探潜力[J]. 石油与天然气地质, 2014, 35(6): 788-797. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406008.htmYUN Lu, CAO Zicheng. Hydrocarbon enrichment pattern and exploration potential of the Ordovician in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 788-797. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406008.htm [3] 沙旭光, 马庆佑, 吕海涛, 等. 塔里木盆地古城墟隆起奥陶系油气成藏特征及主控因素[J]. 海相油气地质, 2014, 19(2): 15-22. doi: 10.3969/j.issn.1672-9854.2014.02.003SHA Xuguang, MA Qingyou, LV Haitao, et al. Hydrocarbon accumulation and main controlling factors of Ordovician reservoir in Guchengxu Uplift, Tarim Basin[J]. Marine Origin Petroleum Geology, 2014, 19(2): 15-22. doi: 10.3969/j.issn.1672-9854.2014.02.003 [4] 黄越义, 廖玉宏, 陈承声, 等. 塔里木盆地顺南1井和顺南4井油气相态演化的数值模拟与预测[J]. 石油与天然气地质, 2023, 44(1): 138-149. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202301011.htmHUANG Yueyi, LIAO Yuhong, CHEN Chengsheng, et al. Numerical simulation and prediction of hydrocarbon phase evolution of wells Shunnan 1 and 4, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(1): 138-149. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202301011.htm [5] 庄新兵, 顾忆, 邵志兵, 等. 塔里木盆地地温场对油气成藏过程的控制作用: 以古城墟隆起为例[J]. 石油学报, 2017, 38(5): 502-511. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201705003.htmZHUANG Xinbing, GU Yi, SHAO Zhibing, et al. Control effect of geothermal field on hydrocarbon accumulation process in Tarim Basin: a case study of Guchengxu Uplift[J]. Acta Petrolei Sinica, 2017, 38(5): 502-511. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201705003.htm [6] 马安来, 金之钧, 朱翠山. 塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义[J]. 石油学报, 2018, 39(1): 42-53. doi: 10.3969/j.issn.1001-8719.2018.01.006MA Anlai, JIN Zhijun, ZHU Cuishan. Detection and research significance of thiadiamondoids from crude oil in well Shunnan 1, Tarim Basin[J]. Acta Petrolei Sinica, 2018, 39(1): 42-53. doi: 10.3969/j.issn.1001-8719.2018.01.006 [7] 马安来, 林会喜, 云露, 等. 塔里木盆地顺托果勒地区奥陶系原油中乙基桥键金刚烷系列的检出及意义[J]. 石油学报, 2022, 43(6): 788-803. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202206004.htmMA Anlai, LIN Huixi, YUN Lu, et al. Detection of ethanodiamondoids in the Ordovician crude oil from Shuntuoguole area in Tarim Basin and its significance[J]. Acta Petrolei Sinica, 2022, 43(6): 788-803. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202206004.htm [8] HUNT J M. Petroleum geochemistry and geology[M]. 2nd ed. New York: W.H. Freeman and Company, 1996: 743. [9] CONNAN J, LE TRAN K, VAN DER WEIDE B. Alteration of petroleum in reservoirs[C]//Proceedings of 9th World Petroleum Congress. Tokyo: Applied Science Publications, 1975: 171-178. [10] BRAUN R L, BURNHAM A K. Thermal cracking of hydrocarbons: report No. UCID-21507[R]. Lawrence Livermore National Laboratory, 1988: 20. [11] PRINZHOFER A A, HUC A Y. Genetic and post-genetic molecular and isotopic fractionations in natural gases[J]. Chemical Geo-logy, 1995, 126(3/4): 281-290. [12] MCNEIL R I, BEMENT W O. Thermal stability of hydrocarbons: laboratory criteria and field examples[J]. Energy & Fuels, 1996, 10(1): 60-67. [13] DAHL J E, MOLDOWAN J M, PETERS K E, et al. Diamondoid hydrocarbons as indicators of natural oil cracking[J]. Nature, 1999, 399(6731): 54-57. doi: 10.1038/19953 [14] WAPLES D W. The kinetics of in-reservoir oil destruction and gas formation: constraints from experimental and empirical data, and from thermodynamics[J]. Organic Geochemistry, 2000, 31(6): 553-575. doi: 10.1016/S0146-6380(00)00023-1 [15] XIE Liujuan, SUN Yongge, UGUNA C N, et al. Thermal cracking of oil under water pressure up to 900 bar at high thermal maturities. 1. Gas compositions and carbon isotopes[J]. Energy & Fuels, 2016, 30(4): 2617-2627. [16] XIE Liujuan, SUN Yongge, UGUNA C N, et al. Thermal cracking of oil under water pressure up to 900 Bar at high thermal maturities: 2. Insight from light hydrocarbon generation and carbon isotope fractionation[J]. Energy & Fuels, 2019, 33(10): 9546-9558. [17] ZHANG S C, HANSON A D, MOLDOWAN J M, et al. Paleozoic oil-source rock correlations in the Tarim Basin, NW China[J]. Organic Geochemistry, 2000, 31(4): 273-286. doi: 10.1016/S0146-6380(00)00003-6 [18] HANSON A D, ZHANG S C, MOLDOWAN J M, et al. Molecular organic geochemistry of the Tarim Basin, Northwest China[J]. AAPG Bulletin, 2000, 84(8): 1109-1128. [19] CAI Chunfang, AMRANI A, WORDEN R H, et al. Sulfur isotopic compositions of individual organosulfur compounds and their genetic links in the Lower Paleozoic petroleum pools of the Tarim Basin, NW China[J]. Geochimica et Cosmochimica Acta, 2016, 182: 88-108. [20] SUN Yongge, CHEN Zhenyan, XU Shiping, et al. Stable carbon and hydrogen isotopic fractionation of individual n-alkanes accompa-nying biodegradation: evidence from a group of progressively biodegraded oils[J]. Organic Geochemistry, 2005, 36(2): 225-238. [21] JIANG Aizhu, ZHOU Peiyu, SUN Yongge, et al. Rapid column chromatography separation of alkylnaphthalenes from aromatic components in sedimentary organic matter for compound specific stable isotope analysis[J]. Organic Geochemistry, 2013, 60: 1-8. [22] SUN Yongge, XU Shiping, LU Hong, et al. Source facies of the Paleozoic petroleum systems in the Tabei Uplift, Tarim Basin, NW China: implications from aryl isoprenoids in crude oils[J]. Organic Geochemistry, 2003, 34(4): 629-634. [23] CAI Chunfang, LI Kaikai, MA Anlai, et al. Distinguishing Cambrian from Upper Ordovician source rocks: evidence from sulfur isotopes and biomarkers in the Tarim Basin[J]. Organic Geochemistry, 2009, 40(7): 755-768. [24] ZHU Guangyou, CHEN Feiran, WANG Meng, et al. Discovery of the Lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim Basin, China[J]. AAPG Bulletin, 2018, 102(10): 2123-2151. [25] 张科, 苏劲, 陈永权, 等. 塔里木盆地寒武系—奥陶系烃源岩油源特征与超深层油气来源[J]. 地质学报, 2023, 97(6): 2026-2041. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202306018.htmZHANG Ke, SU Jin, CHEN Yongquan, et al. The biogeochemical features of the Cambrian-Ordovician source rocks and origin of ultra-deep hydrocarbons in the Tarim Basin[J]. Acta Geologica Sinica, 2023, 97(6): 2026-2041. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202306018.htm [26] WORDEN R H, SMALLEY P C. H2S-producing reactions in deep carbonate gas reservoirs: Khuff Formation, Abu Dhabi[J]. Chemical Geology, 1996, 133(1/4): 157-171. [27] THOMPSON K F M. Fractionated aromatic petroleums and the generation of gas-condensates[J]. Organic Geochemistry, 1987, 11(6): 573-590. [28] CAI Chunfang, XIAO Qilin, FANG Chenchen, et al. The effect of thermochemical sulfate reduction on formation and isomerization of thiadiamondoids and diamondoids in the Lower Paleozoic petroleumpools of the Tarim Basin, NW China[J]. Organic Geochemistry, 2016, 101: 49-62. [29] CLAYTON C J, BJORØY M. Effect of maturity on 13C/12C ratios of individual compounds in North Sea oils[J]. Organic Geochemistry, 1994, 21(6/7): 737-750. [30] SUN Yongge, SHENG Guoying, PENG Ping'an, et al. Compound-specific stable carbon isotope analysis as a tool for correlating coal-sourced oils and interbedded shale-sourced oils in coal measures: an example from Turpan Basin, North-western China[J]. Organic Geochemistry, 2000, 31(12): 1349-1362. [31] XIAO Qilin, SUN Yongge, ZHANG Yongdong, et al. Stable carbon isotope fractionation of individual light hydrocarbons in the C6-C8 range in crude oil as induced by natural evaporation: experimental results and geological implications[J]. Organic Geochemistry, 2012, 50: 44-56. [32] 蒋爱珠, 谢柳娟, 张永东, 等. 烷基萘分子稳定碳同位素组成演变的热模拟实验及其意义[J]. 地球化学, 2013, 42(6): 509-522. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201306001.htmJIANG Aizhu, XIE Liujua, ZHANG Yongdong, et al. Stable carbon isotopic dynamics of alkylated naphthalenes accompanying thermal maturation: implications for oil/oil, oil/source correlation[J]. Geochimica, 2013, 42(6): 509-522. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201306001.htm