Nitrogen isotope compositions and organic matter accumulation in terrestrial hydrocarbon source rocks in China
-
摘要: 氮作为重要的生命元素与有机质聚集之间具有成因联系,但尚未形成系统性、规律性认识。以中国广泛发育的二叠系—古近系陆(湖)相烃源岩为例,对此进行了探讨。结果表明,根据氮同位素(δ15N)组成,结合盐度和蒸发性碱类矿物特征,可将中国陆相烃源岩分为3组:近中性组1(δ15N平均值为4.0‰±1.5‰)、近中性组2(δ15N平均值为7.1‰±1.6‰)和碱性组(δ15N平均值为18.4‰±3.3‰)。在δ15N < 10‰的近中性组中,烃源岩的δ15N与有机质丰度、类型、生烃能力和页岩油潜力呈正相关,原因在于较高的δ15N值指征了生烃母质组成的变化。在δ15N>10‰的碱性组中,有机质类型都较好,页岩油潜力都较高,但烃源岩的δ15N与有机质聚集的响应关系不如中性组,反映有机质聚集受非δ15N其他综合因素的影响与控制。据此建立了基于δ15N划分出的3类湖相烃源岩的有机质聚集模式(< 5‰、5‰~10‰、>10‰)。δ15N具有示踪有机质聚集和烃源岩质量的潜力,以湖相烃源岩为例,低δ15N型(δ15N < 5‰)质量差,中—高δ15N型(δ15N>5‰)质量好。从氮同位素组成和氮循环这一新角度探讨了烃源岩有机质聚集,丰富了氮的生物地球化学与烃源岩地球化学研究。Abstract: As an important biological element, nitrogen is causally linked with organic matter accumulation, but a systematic and regular understanding has not been developed. This paper discusses this issue by taking the widely developed Permian-Paleogene terrestrial (lacustrine) hydrocarbon source rocks in China as an example. The results show that the terrestrial source rocks in China can be classified into three groups according to the nitrogen isotope (δ15N) compositions and combined with the salinity and evaporative alkali mineral characteristics: the circum-neutral group 1 (average δ15N=4.0‰±1.5‰), the circum-neutral group 2 (average δ15N=7.1‰±1.6‰), and the alkaline group (average δ15N=18.4‰±3.3‰). In the circum-neutral group with δ15N < 10‰, the δ15N of the source rocks is positively correlated with organic matter abundance, type, hydrocarbon generating capacity and shale oil potential due to the fact that higher δ15N characterizes changes in the composition of the hydrocarbon generating bio-precursors. In the alkaline group with δ15N>10‰, the organic matter types are good and shale oil potentials are higher, but the response relationship between δ15N of source rocks and organic matter accumulation is not as good as that of the circum-neutral group, reflecting that the organic matter accumulation in alkaline group is influenced by other comprehensive factors other than δ15N. Accordingly, the organic matter accumulation models of three types of lacustrine source rocks (< 5‰, 5‰-10‰, and >10‰) classified on the basis of δ15N were established. The δ15N has the potential to trace organic matter accumulation and quality of source rocks. For example, low δ15N type (δ15N < 5‰) is of poor quality and medium-high δ15N type (δ15N>5‰) is of good qualityin lacustrine source rocks. This paper enriches the biogeochemical and hydrocarbon source rock geochemical studies of nitrogen by exploring organic matter accumulation in source rocks from the new perspective of nitrogen isotope composition and nitrogen cycling.
-
图 3 δ15N、ω(P)/ω(Al)、MoEF、ω(TOC)、S1+S2、δ13Corg、IH、PG/ω(TOC)和OSI随深度变化特征
a.南襄盆地泌阳凹陷核桃园组程2井;b.准噶尔盆地玛湖凹陷湖盆中心区风城组(F20、FN7和AK1井的样品深度根据地层数据转换为FN5井的等效深度)。图a和图b中的岩性柱状图分别来自文献[23, 26],ω(TOC)、δ13Corg和δ15N数据来自文献[26]。PG/ω(TOC)、OSI的单位为mg/g。
Figure 3. Characterization of δ15N, ω(P)/ω(Al), MoEF, ω(TOC), S1+S2, δ13Corg, IH, PG/ω(TOC) and OSI with depth
图 5 海相和湖相环境中的氮循环基本方式
a.海相和近中性组1和组2湖相环境中的氮循环;b.碱性组湖相环境中的氮循环,修改自文献[15]。ε=δ15N产物-δ15N反应物(图中单位为‰)。
Figure 5. Pathways of nitrogen cycling in marine and lacustrine environments
表 1 研究样品清单
Table 1. Sample list for this study
项目 准噶尔盆地 四川盆地中部 鄂尔多斯盆地 松辽盆地 渤海湾盆地东濮凹陷 江汉盆地潜江凹陷 南襄盆地泌阳凹陷 柴达木盆地西部 准噶尔盆地玛湖凹陷 准噶尔盆地吉木萨尔凹陷 层位 P1j、P2w、P2p J1zd T3y7 K2qn E2-3s E2q E2h3 E2xg P1f P2l 样品数/个 27 9 9 9 10 9 10 66 5 δ15N/‰ 1.2~8.8 3.0~5.7 2.5~5.0 3.9~10.8 5.4~8.4 4.7~8.9 6.0~9.8 3.9~8.0 10.1~24.4 10.6~16.8 氮循环 δ15N平均值为4.0‰±1.5‰,反硝化作用控制 δ15N平均值为7.1‰±1.6‰,反硝化作用控制 δ15N平均值为18.4‰±3.3‰,氨挥发作用控制 分组 近中性组1 近中性组2 碱性组 盐度 淡水—微咸水 淡水—微咸水 淡水—微咸水 微咸水—咸水 咸水—盐水 咸水—盐水 微咸水—盐水 微咸水—盐水 咸水—盐水 微咸水—盐水 氧化还原 氧化—贫氧 贫氧—缺氧 主体缺氧 贫氧—缺氧 ω(TOC)/% 0.4~2.5 1.2~3.6 3.6~10.1 0.7~3.1 0.3~2.4 1.1~4.4 1.8~4.4 0.4~1.6 0.2~3.1 1.4~7.8 δ13Corg/‰ -27.6~-20.3 -28.9~-26.5 -30.4~-28.3 -30.2~-25.9 -27.4~-23.4 -27.1~-23.7 -29.1~-25.9 -28.4~-23.1 -30.6~-24.0 -29.5~-25.2 ω(P)/ω(Al)/10-3 0.7~26.7 3.8~18.2 9.1~57.8 8.3~8.3 12.2~26.8 8.0~29.4 5.8~17.1 0.7~15.0 7.4~14.9 ω(Ba)/ω(Al)/10-3 1.9~12.2 6.6~9.4 5.4~11.4 10.5~35.1 3.3~22.1 4.0~18.2 6.7~14.3 4.7~60.0 0.8~73.7 5.3~9.4 MoEF 0.1~60.1 0.8~12.9 3.6~18.1 7.5~59.1 2.8~49.0 5.1~31.2 14.3~47.7 4.1~28.7 0.5~190.9 2.1~12.0 ω(SiO2)/ω(Al2O3) 1.8~4.9 2.6~3.9 2.6~3.3 2.8~3.5 2.7~3.8 2.7~4.2 3.3~4.9 3.5~23.3 3.9~4.7 S1+S2 0.06~10.7 4.1~10.3 1.3~11.2 0.3~27.6 4.7~24.2 2.3~20.8 0.5~10.1 0.2~25.3 4.3~23.8 IH 0.1~501.9 199.8~311.8 120.0~523.7 91.0~595.5 191.4~376.7 79.6~617.1 29.7~540.8 45.7~876.6 40.5~523.3 PG/ω(TOC) 3.3~543.3 248.9~410.8 182.7~970.5 94.6~648.5 418.9~790.3 126.6~655.4 49.8~635.7 49.8~983.5 54.3~796.1 OSI 0.5~473.2 25.1~121.5 62.8~446.8 3.2~116.7 121.1~561.8 29.0~211.7 20.1~188.2 13.8~272.8 4.1~723.6 注:δ15N、ω(TOC)、δ13Corg、盐度和氧化还原状态来自文献[26];鄂尔多斯盆地T3y7数据来自文献[17, 25];PG=(S1+S2)、IH、PG/ω(TOC)和OSI=S1/ω(TOC)的单位为mg/g。 表 2 中国3类陆相湖盆烃源岩有机质聚集特征
Table 2. Characteristics of organic matter accumulation in three types of hydrocarbon source rocks in terrestrial lacustrine basins in China
烃源岩类型 δ15N/‰ 层位 氧化还原状态 盐度 有机质聚集特征 低δ15N型,近中性组1 主体 < 5,均值4.0±1.5 准噶尔盆地其他组、T3y7、J1zd 氧化—贫氧 淡水—微咸水 初级生产力较低、有机质保存条件较差;生烃潜量低、有机质类型差、生烃能力较低、页岩油潜力低 中δ15N型,近中性组2 5~10,均值7.1±1.6 K2qn、E2-3s、E2q、E2h、E2xg 氧化—缺氧 微咸水—盐水 初级生产力较高、有机质保存条件较好;生烃潜量高、有机质类型较好、生烃能力较高、页岩油潜力较高 高δ15N型,碱性组 >10,均值18.4±3.3 P1f、P2l 贫氧—缺氧 微咸水—盐水 初级生产力变化大、有机保存条件较好;有机质丰度变化大、有机质类型好、生烃能力变化大、页岩油潜力大 -
[1] PAN C H. Geological notes: non-marine origin of petroleum in north Shensi, and the Cretaceous of Szechuan, China[J]. AAPG Bulletin, 1941, 25(11): 2058-2068. [2] 石油勘探开发科学研究院地质研究所. 中国陆相油气生成[M]. 北京: 石油工业出版社, 1982: 355.Geological Research Institute of Petroleum Exploration and Deve-lopment Research Institute. Oil and gas generation in China continental deposit[M]. Beijing: Petroleum Industry Press, 1982: 355. [3] KATZ B J. Controlling factors on source rock development: a review of productivity, preservation, and sedimentation rate[M]//HARRIS N B. The deposition of organic-carbon-rich sediments: models, mechanisms, and consequences. Tulsa: SEPM Special Publication, 2005: 7-16. [4] 关德范. 论海相生油与陆相生油[J]. 中外能源, 2014, 19(10): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201410003.htmGUAN Defan. Discuss on marine oil generation and terrestrial oil generation[J]. Sino-Global Energy, 2014, 19(10): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201410003.htm [5] 贾承造, 邹才能, 杨智, 等. 陆相油气地质理论在中国中西部盆地的重大进展[J]. 石油勘探与开发, 2018, 45(4): 546-560. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804002.htmJIA Chengzao, ZOU Caineng, YANG Zhi, et al. Significant progress of continental petroleum geology theory in basins of central and western China[J]. Petroleum Exploration and Development, 2018, 45(4): 546-560. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804002.htm [6] 腾格尔, 蒋启贵, 陶成, 等. 中国烃源岩研究进展、挑战与展望[J]. 中外能源, 2010, 15(12): 37-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201012008.htmTENGER, JIANG Qigui, TAO Cheng, et al. Research progress, challenge and prospect of the source rocks in China[J]. Sino-Global Energy, 2010, 15(12): 37-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201012008.htm [7] 关德范. 如何重建中国陆相烃源岩生油理论[J]. 中外能源, 2019, 24(10): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201910001.htmGUAN Defan. How to reconstruct theory of terrestrial facies of petroleum in China[J]. Sino-Global Energy, 2019, 24(10): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201910001.htm [8] 潘松圻, 邹才能, 李勇, 等. 重大生物事件与化石能源形成演化: 兼论地球系统框架下能源学发展[J]. 石油勘探与开发, 2021, 48(3): 498-509. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103007.htmPAN Songqi, ZOU Caineng, LI Yong, et al. Major biological events and fossil energy formation: on the development of energy science under the earth system framework[J]. Petroleum Exploration and Development, 2021, 48(3): 498-509. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103007.htm [9] 张水昌, 王华建, 王晓梅, 等. 中元古代海洋生物碳泵: 有机质来源、降解与富集[J]. 科学通报, 2022, 67(15): 1624-1643. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202215005.htmZHANG Shuichang, WANG Huajian, WANG Xiaomei, et al. Mesoproterozoic marine biological carbon pump: source, degradation, and enrichment of organic matter[J]. Chinese Science Bulletin, 2022, 67(15): 1624-1643. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202215005.htm [10] XIA Liuwen, CAO Jian, HU Wenxuan, et al. Effects on global warming by microbial methanogenesis in alkaline lakes during the Late Paleozoic Ice Age (LPIA)[J]. Geology, 2023, doi: 10.1130/G51286.1. [11] TALBOT M R. Nitrogen isotopes in palaeolimnology[M]//LAST W M, SMOL J P. Tracking environmental change using lake sediments. Dordrecht: Springer, 2002: 401-439. [12] STVEKEN E E, BUICK R, GUY B M, et al. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr[J]. Nature, 2015, 520(7549): 666-669. doi: 10.1038/nature14180 [13] NAAFS B D A, MONTEIRO F M, PEARSON A, et al. Fundamentally different global marine nitrogen cycling in response to severe ocean deoxygenation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(50): 24979-24984. [14] COX G M, SANSJOFRE P, BLADES M L, et al. Dynamic interaction between basin redox and the biogeochemical nitrogen cycle in an unconventional Proterozoic petroleum system[J]. Scientific Reports, 2019, 9(1): 5200. doi: 10.1038/s41598-019-40783-4 [15] COLLISTER J W, HAYS J M. A preliminary study of the carbon and nitrogen isotopic biogeochemistry of lacustrine sedimentary rocks from the Green River Formation[M]//TUTTLE M L. Recent geochemical, biogeochemical, and sedimentological studies of the Green River Formation. Wyoming, Utah, and Colorado. Denver: United States Geological Survey Bulletin, 1991: 265-276. [16] XIA Liuwen, CAO Jian, HU Wenxuan, et al. Paleo-environmental conditions and organic carbon accumulation during glacial events: new insights from saline lacustrine basins[J]. Global and Planetary Change, 2023, 227: 104162. doi: 10.1016/j.gloplacha.2023.104162 [17] CHEN Juan, CHEN Jianfa, SHI Shengbao, et al. The linkage of nitrogen isotopic composition and depositional environment of black mudstones in the Upper Triassic Yanchang Formation, Ordos Basin, northern China[J]. Journal of Asian Earth Sciences, 2020, 193: 104308. doi: 10.1016/j.jseaes.2020.104308 [18] CHEN Ruiqian, LIU Guangdi, SHANG Fei, et al. Nitrogen isotope compositions of the Upper Triassic Chang 7 shale, Ordos Basin, North China: implications for depositional redox conditions[J]. Marine and Petroleum Geology, 2019, 109: 279-290. doi: 10.1016/j.marpetgeo.2019.06.027 [19] 宋力, 陈睿倩, 商斐. 松辽盆地后金沟剖面上白垩统烃源岩氧化还原环境重建[J]. 高校地质学报, 2019, 25(6): 838-846. doi: 10.16108/j.issn1006-7493.2019077SONG Li, CHEN Ruiqian, SHANG Fei. Reconstructing redox conditions of Upper Cretaceous source rocks in the Houjingou section of the Songliao Basin[J]. Geological Journal of China Universities, 2019, 25(6): 838-846. doi: 10.16108/j.issn1006-7493.2019077 [20] XU Weimu, RUHL M, JENKYNS H C, et al. Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event[J]. Nature Geoscience, 2017, 10(2): 129-134. doi: 10.1038/ngeo2871 [21] WEI Wei, ALGEO T J, LU Yangbo, et al. Identifying marine incursions into the Paleogene Bohai Bay Basin lake system in northeastern China[J]. International Journal of Coal Geology, 2018, 200: 1-17. doi: 10.1016/j.coal.2018.10.001 [22] LIU Chang, LIU Keyu, WANG Xiaoqi, et al. Chemostratigraphy and sedimentary facies analysis of the Permian Lucaogou Formation in the Jimusaer Sag, Junggar Basin, NW China: implications for tight oil exploration[J]. Journal of Asian Earth Sciences, 2019, 178: 96-111. doi: 10.1016/j.jseaes.2018.04.013 [23] XIA Liuwen, CAO Jian, HU Shouzhi, et al. How marine incursion influences the quality of lacustrine source rocks: the Paleogene Nanxiang Basin, eastern China[J]. AAPG Bulletin, 2019, 103(5): 1071-1096. doi: 10.1306/101261817268 [24] CAO Jian, XIA Liuwen, WANG Tingting, et al. An alkaline lake in the Late Paleozoic Ice Age (LPIA): a review and new insights into paleoenvironment and petroleum geology[J]. Earth-Science Reviews, 2020, 202: 103091. [25] 陈果. 滨浅湖细粒沉积烃源岩有机质富集机理研究: 以鄂尔多斯盆地盐池—定边地区长7段烃源岩为例[D]. 北京: 中国石油大学(北京), 2019: 1-132.CHEN Guo. Organic matter enrichment of fine-grained source rock in shollow lake facies: an example from Chang 7 source rock in Yanchi-Dingbian area[D]. Beijing: China University of Petroleum, Beijing, 2019: 1-132. [26] XIA Liuwen, CAO Jian, STVEKEN E E, et al. Linkages between nitrogen cycling, nitrogen isotopes, and environmental properties in paleo-lake basins[J]. GSA Bulletin, 2022, 134(9/10): 2359-2372. [27] CARROLL A R. Upper Permian lacustrine organic facies evolution, southern Junggar Basin, NW China[J]. Organic Geoche-mistry, 1998, 28(11): 649-667. doi: 10.1016/S0146-6380(98)00040-0 [28] CAO Jian, ZHANG Yijie, HU Wenxuan, et al. The Permian hybrid petroleum system in the northwest margin of the Junggar Basin, northwest China[J]. Marine and Petroleum Geology, 2005, 22(3): 331-349. doi: 10.1016/j.marpetgeo.2005.01.005 [29] 陈建平, 王绪龙, 邓春萍, 等. 准噶尔盆地烃源岩与原油地球化学特征[J]. 地质学报, 2016, 90(1): 37-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201601003.htmCHEN Jianping, WANG Xulong, DENG Chunping, et al. Geochemical features of source rocks and crude oil in the Junggar Basin, Northwest China[J]. Acta Geologica Sinica, 2016, 90(1): 37-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201601003.htm [30] 张关龙, 王越. 准噶尔盆地早二叠世构造—沉积格局及石油地质意义[J]. 油气地质与采收率, 2023, 30(1): 35-48. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202301003.htmZHANG Guanlong, WANG Yue. Tectono-sedimentary framework of Early Permian in Junggar Basin and its petroleum geological significance[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1): 35-48. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202301003.htm [31] 于淼, 高岗, 靳军, 等. 准噶尔盆地南缘下组合煤系烃源岩生烃模拟及高探1井油气源研究[J]. 石油实验地质, 2022, 44(4): 687-697. doi: 10.11781/sysydz202204687YU Miao, GAO Gang, JIN Jun, et al. Hydrocarbon generation simulation of coaly source rocks in the lower combination on the southern margin of Junggar Basin and indications for oil and gas sources of well Gaotan 1[J]. Petroleum Geology & Experiment, 2022, 44(4): 687-697. doi: 10.11781/sysydz202204687 [32] 王越, 熊伟, 于洪州, 等. 准噶尔盆地东部芦草沟组层序地层格架与沉积充填模式[J]. 油气地质与采收率, 2022, 29(4): 12-24. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202204002.htmWANG Yue, XIONG Wei, YU Hongzhou, et al. Sequence stratigraphic framework and sedimentary filling model of Lucaogou Formation in eastern Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4): 12-24. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202204002.htm [33] 黄立良, 王然, 邹阳, 等. 准噶尔盆地玛南斜坡区上二叠统上乌尔禾组连续型砂砾岩油藏群成藏特征[J]. 石油实验地质, 2022, 44(1): 51-59. doi: 10.11781/sysydz202201051HUANG Liliang, WANG Ran, ZOU Yang, et al. Accumulation characteristics of continuous sand conglomerate reservoirs of Upper Permian Upper Wuerhe Formation in Manan slope area, Junggar Basin[J]. Petroleum Geology & Experiment, 2022, 44(1): 51-59. doi: 10.11781/sysydz202201051 [34] 李二庭, 陈俊, 曹剑, 等. 准噶尔盆地莫索湾地区原油地球化学特征及成因分析[J]. 石油实验地质, 2022, 44(1): 112-120. doi: 10.11781/sysydz202201112LI Erting, CHEN Jun, CAO Jian, et al. Geochemical characteristics and genetic analysis of crude oils in Mosuowan area, Junggar Basin[J]. Petroleum Geology & Experiment, 2022, 44(1): 112-120. doi: 10.11781/sysydz202201112 [35] 袁浩伟, 陈书平, 戴鹍, 等. 准噶尔盆地柴窝堡凹陷达坂城次凹断裂系统及其与油气的关系[J]. 石油实验地质, 2021, 43(4): 569-579. doi: 10.11781/sysydz202104569YUAN Haowei, CHEN Shuping, Dai Kun, et al. Fault systems and their relationships to oil and gas in Dabancheng subsag, Chaiwopu Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2021, 43(4): 569-579. doi: 10.11781/sysydz202104569 [36] 李二庭, 王剑, 李际, 等. 源储一体烃源岩精确评价: 以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J]. 石油实验地质, 2021, 43(2): 335-342. doi: 10.11781/sysydz202102335LI Erting, WANG Jian, LI Ji, et al. Accurate evaluation of source rocks in source-reservoir integration: a case study of source rocks in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 335-342. doi: 10.11781/sysydz202102335 [37] YU Kuanhong, CAO Yingchang, QIU Longwei, et al. Geochemical characteristics and origin of sodium carbonates in a closed alkaline basin: the Lower Permian Fengcheng Formation in the Mahu Sag, northwestern Junggar Basin, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511: 506-531. [38] XIA Liuwen, CAO Jian, STVEKEN E E, et al. Unsynchronized evolution of salinity and pH of a Permian alkaline lake influenced by hydrothermal fluids: a multi-proxy geochemical study[J]. Che-mical Geology, 2020, 541: 119581. [39] DING Wenjing, HOU Dujie, JIANG Lian, et al. High abundance of carotanes in the brackish-saline lacustrine sediments: a possible cyanobacteria source[J]. International Journal of Coal Geology, 2020, 219: 103373. http://www.xueshufan.com/publication/2995728231 [40] XIA Liuwen, CAO Jian, HU Wenxuan, et al. Coupling of paleoenvironment and biogeochemistry of deep-time alkaline lakes: a lipid biomarker perspective[J]. Earth-Science Reviews, 2021, 213: 103499. [41] 冯子辉, 霍秋立, 王雪, 等. 松辽盆地松科1井晚白垩世沉积地层有机地球化学研究[J]. 地学前缘, 2009, 16(5): 181-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200905022.htmFENG Zihui, HUO Qiuli, WANG Xue, et al. Geochemical research on the Late Cretaceous strata of well SK1 in Songliao Basin[J]. Earth Science Frontiers, 2009, 16(5): 181-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200905022.htm [42] XIA Liuwen, CAO Jian, HU Shouzhi, et al. Organic geochemistry, petrology, and conventional and unconventional hydrocarbon resource potential of Paleogene saline source rocks in eastern China: the Biyang Sag of the Nanxiang Basin[J]. Marine and Petroleum Geology, 2019, 101: 343-354. [43] PHILP R P, FAN Zhaoan. Geochemical investigation of oils and source rocks from Qianjiang Depression of Jianghan Basin, a terrigenous saline basin, China[J]. Organic Geochemistry, 1987, 11(6): 549-562. [44] LI Maowen, CHEN Zhuoheng, CAO Tingting, et al. Expelled oils and their impacts on Rock-Eval data interpretation, Eocene Qianjiang Formation in Jianghan Basin, China[J]. International Journal of Coal Geology, 2018, 191: 37-48. [45] PETERS K E, CASSA M R. Applied source rock geochemistry[M]//MAGOON L B, DOW W G. The petroleum system: from source to trap. Tulsa: AAPG, 1994: 99-117. [46] JARVIE D M. Shale resource systems for oil and gas: part 1—shale-gas resource systems[M]//BREYER J A. Shale reservoirs: giant resources for the 21st century. Tulsa: AAPG, 2012: 69-87. [47] DYMOND J, SUESS E, LYLE M. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity[J]. Paleoceanography, 1992, 7(2): 163-181. [48] TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12-32. [49] GUILBAUD R, POULTON S W, THOMPSON J, et al. Phosphorus- limited conditions in the early Neoproterozoic ocean maintained low levels of atmospheric oxygen[J]. Nature Geoscience, 2020, 13(4): 296-301. [50] MURPHY A E, SAGEMAN B B, HOLLANDER D J, et al. Black shale deposition and faunal overturn in the Devonian Appalachian Basin: clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling[J]. Paleoceanography, 2000, 15(3): 280-291. [51] WARREN J K. Halotolerant life in feast or famine: organic sources of hydrocarbons and fixers of metals[M]//WARREN J K. Evaporites. Cham: Springer, 2016: 833-958. [52] STVEKEN E E, TINO C, ARP G, et al. Nitrogen isotope ratios trace high-pH conditions in a terrestrial Mars analog site[J]. Science Advances, 2020, 6(9): eaay3440. [53] SCOTT C, LYONS T W. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies[J]. Chemical Geology, 2012, 324-325: 19-27. [54] GLASS J B, AXLER R P, CHANDRA S, et al. Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures[J]. Frontiers in Microbiology, 2012, 3: 331. [55] STVEKEN E E, KIPP M A, KOEHLER M C, et al. The evolution of Earth's biogeochemical nitrogen cycle[J]. Earth-Science Reviews, 2016, 160: 220-239. [56] AIRD P. Deepwater drilling: well planning, design, engineering, operations, and technology application[M]. Cambridge: Gulf Professional Publishing, 2019: 675. [57] ESPITALIE J, MADEC M, TISSOT B, et al. Source rock characterization method for petroleum exploration[C]//Proceedings of the offshore technology conference. Houston: Offshore Technology Conference, 1977: 439-444. [58] LI Wenwen, CAO Jian, ZHI Dongming, et al. Controls on shale oil accumulation in alkaline lacustrine settings: Late Paleozoic Fengcheng Formation, northwestern Junggar Basin[J]. Marine and Petroleum Geology, 2021, 129: 105107. [59] 朱筱敏, 董艳蕾, 胡廷惠, 等. 精细层序地层格架与地震沉积学研究: 以泌阳凹陷核桃园组为例[J]. 石油与天然气地质, 2011, 32(4): 615-624. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201104020.htmZHU Xiaomin, DONG Yanlei, HU Tinghui, et al. Seismic sedi-mentology study of fine sequence stratigraphic framework: a case study of the Hetaoyuan Formation in the Biyang Sag[J]. Oil & Gas Geology, 2011, 32(4): 615-624. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201104020.htm [60] SIGMAN D M, KARSH K L, CASCIOTTI K L. Nitrogen isotopes in the ocean[M]//STEELE J H, THORPE S A, TUREKIAN K K. Encyclopedia of ocean sciences. 2nd ed. London: Academic Press, 2009: 40-54. [61] ALGEO T J, MEYERS P A, ROBINSON R S, et al. Icehouse-greenhouse variations in marine denitrification[J]. Biogeosciences, 2014, 11(4): 1273-1295.