留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

万米钻探工程的石油地质理论依据与勘探方向

金晓辉 孟庆强 孙冬胜 田金强 梁世友 李强

金晓辉, 孟庆强, 孙冬胜, 田金强, 梁世友, 李强. 万米钻探工程的石油地质理论依据与勘探方向[J]. 石油实验地质, 2023, 45(5): 973-981. doi: 10.11781/sysydz202305973
引用本文: 金晓辉, 孟庆强, 孙冬胜, 田金强, 梁世友, 李强. 万米钻探工程的石油地质理论依据与勘探方向[J]. 石油实验地质, 2023, 45(5): 973-981. doi: 10.11781/sysydz202305973
JIN Xiaohui, MENG Qingqiang, SUN Dongsheng, TIAN Jinqiang, LIANG Shiyou, LI Qiang. Basis of petroleum geological theory and exploration direction for ultra-deep exploration of 10 000-meter depth[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(5): 973-981. doi: 10.11781/sysydz202305973
Citation: JIN Xiaohui, MENG Qingqiang, SUN Dongsheng, TIAN Jinqiang, LIANG Shiyou, LI Qiang. Basis of petroleum geological theory and exploration direction for ultra-deep exploration of 10 000-meter depth[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(5): 973-981. doi: 10.11781/sysydz202305973

万米钻探工程的石油地质理论依据与勘探方向

doi: 10.11781/sysydz202305973
基金项目: 

中国科学院战略性先导研究“A”类项目 XDA14010406

国家自然科学基金项目 42172168

详细信息
    作者简介:

    金晓辉(1964-), 男, 博士, 教授级高级工程师, 从事油气成藏机理与区带评价研究。E-mail: jinxh.syky@sinopec.com

    通讯作者:

    孟庆强(1978-), 男, 博士, 高级工程师, 本刊青年编委, 从事成藏机理及油气地球化学研究。E-mail: mengqq.syky@sinopec.com

  • 中图分类号: TE122

Basis of petroleum geological theory and exploration direction for ultra-deep exploration of 10 000-meter depth

  • 摘要: 油气资源是关系着我国经济发展的重要战略资源。我国陆上主力油田经过50余年开采,油田含水率已超90%。我国石油和天然气对外依存度已分别由2013年的58.9%和29.2%提高到2022年的71.2%和40.2%,已进入石油安全警戒线,影响国家安全。为了寻找更多接替储量,油气勘探向“更深、更复杂”超深层的万米勘探新领域推进,近期国内油公司相继实施了“深海一号”、“深地一号”油气勘探计划,探索实践了智能导钻新技术,推动了万米勘探计划的实施,9 000 m以深的井也发现了油气藏。通过近期的勘探实践,从超深层成烃、成储与成藏机理等方面,论证了万米钻探的石油地质理论依据,指出超深层具有多途径生烃,已经突破120~160 ℃的生烃门限;“三元控储”理论指出,大于4 500 m的深层、超深层仍发育有效的储集体;多期成藏与保持是超深层规模油气藏发育的有利条件。四川盆地海相深层资源总量约为15.22×1012 m3,其绵长裂陷槽周缘震旦系、川中古隆起周缘龙王庙组、城口海槽南侧米仓山—大巴山地区龙王庙组、川西上古生界深层等具有千亿立方米的资源规模。塔里木海相深层总资源量约为152.62×108 t油当量,其中塔北隆起、塔中隆起、麦盖提斜坡的中下奥陶统岩溶以及满加尔西缘中下寒武统台缘带、阿瓦提—顺托果勒中下寒武统台内滩等是具有亿吨级规模的勘探领域。鄂尔多斯盆地西南缘的中新元古界近期也有重要的油气发现。准噶尔盆地准中深洼带、塔里木盆地库车坳陷深层等碎屑岩领域也是万米勘探的重要领域。

     

  • 图  1  多途径复合生气模式

    据参考文献[11]修改。

    Figure  1.  Multi-pathway gas generation mode

    图  2  不同地区油气藏的地温梯度

    Figure  2.  Geothermal gradient of hydrocarbon reservoirs in different areas

    图  3  深层碳酸盐岩储层物性及岩石物性变化示意

    a.不同储层孔隙度随埋深变化,数据据文献[26],MB为毛坝,LJZ为罗家寨,PG为普光,YB为元坝,JN为建南,TSP为铁山坪;b.白云岩溶蚀实验离子浓度变化示意,数据据文献[27];c.岩石力学性质随深度变化示意,数据据文献[28]。

    Figure  3.  Sketch map of reservoir physical property and rock physical property changes for deep carbonate reservoirs

    图  4  塔里木盆地顺北走滑断裂与储层成因模式

    修改自文献[27]。

    Figure  4.  Mechanism of strike-slip faults and reservoir formation in northern Shuntuoguole area, Tarim Basin

    图  5  国内外部分油气藏成藏期—埋深示意

    修改自文献[31]。

    Figure  5.  Correlation between accumulation period and burial depth of some oil and gas reservoirs in China and abroard

    表  1  我国典型深井钻井情况简表

    Table  1.   Brief situation of typical deep drilling wells in China

    盆地 井号 构造位置 完钻井深/m 完钻层位
    四川盆地 NJ1 龙女寺构造 6 011.6 前震旦系
    WT1 檀木场潜伏构造 8 060 南沱组
    SHY001-H6 龙门山构造带 9 010 二叠系栖霞组
    PT6 川中平缓断褶带 9 026 灯影组
    YB121H 九龙山背斜构造带 7 786 长兴组
    PSH6 川中古隆起北斜坡 9 040 灯影组二段
    YB13 九龙山背斜 7 192 茅口组
    YB28 元坝低缓构造带 7 065 吴家坪组
    塔里木盆地 SHB3 顺托果勒低隆起 7 520~7 870 一间房组、鹰山组
    SHB 501 顺托果勒低隆起 8 360 一间房组、鹰山组
    SHB 5-5H 顺托果勒低隆起 8 520 一间房组、鹰山组
    SHB 55X 顺托果勒低隆起 8 725 一间房组、鹰山组
    SHB 53-2H 顺托果勒低隆起 8 662.96 一间房组、鹰山组
    TSH5 阿克库勒凸起 9 017 奇格布拉克组
    SHB56X 顺托果勒低隆起 9 300 一间房组、鹰山组
    LT1 阿克库勒凸起 8 882 肖尔布拉克组和沙依里克组组
    TSH1 阿克库勒凸起 8 048 蓬莱坝组
    SHB84X 顺托果勒低隆起 9 195 齐格布拉克组
    ZHSH1 塔中隆起 6 835 沙依里克组
    CT1 古城隆起 7 280 上寒武统
    下载: 导出CSV

    表  2  国内外部分重点地区深层主力烃源岩主生烃期埋深与现今埋深对比

    Table  2.   Comparison between burial depth of main source rocks in deep formations during main hydro- carbon generation period and current burial depth in some key regions in China and abroad

    盆地/油田 井名/地区 烃源岩 主生烃期埋深/m 井深/m
    扎格罗斯Kuh-e-Mond油田 MD-5 Kazhdumi组 4 000 5 000
    坎波斯盆地外陆架区 RJS-117 下白垩统 4 500 6 000
    南阿曼盐盆AlNoor油田 下寒武统A4层段 4 200 4 500
    二叠盆地特拉华次盆 War-Wink 中奥陶统Simpson群 4 500 6 500
    阿纳达科盆地 西部前渊区 泥盆系Woodford页岩 2 500 11 500
    滨里海盆地南部次盆 Tengiz油田 泥盆系 4 500 6 500
    墨西哥湾 Hatters Pond Smackover页岩 3 750 4 700
    南里海—西土库曼斯坦 麦考普群 4 500 12 250
    塔河油田 S74 寒武系玉尔吐斯组 4 500 6 500
    塔河油田 SN4 寒武系玉尔吐斯组 3 500 6 700
    塔河油田 艾丁4 寒武系玉尔吐斯组 2 500 6 000
    顺北气田 SN5 寒武系玉尔吐斯组 4 100 7 500
    塔河油田 TS5 寒武系玉尔吐斯组 4 000 9 017
    普光气田 普光2 吴家坪组 4 000 7 500
    元坝气田 元坝2 吴家坪组 3 000 7 500
    安岳气田 磨溪8 筇竹寺组 2 500 5 800
    四川盆地 马深1 筇竹寺组 4 100 8 500
    大牛地气田 大深1 中奥陶统 3 540 4 300
    下载: 导出CSV
  • [1] 张水昌, 王华建, 王晓梅, 等. 中元古代海洋生物碳泵: 有机质来源、降解与富集[J]. 科学通报, 2022, 67(15): 1624-1643. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202215005.htm

    ZHANG Shuichang, WANG Huajian, WANG Xiaomei, et al. Mesoproterozoic marine biological carbon pump: source, degradation, and enrichment of organic matter[J]. Chinese Science Bulletin, 2022, 67(15): 1624-1643. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202215005.htm
    [2] TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. Berlin: Springer, 1984: 1-272.
    [3] 李慧莉, 邵志兵, 金之钧, 等. 多旋回盆地复杂生烃史条件下烃源岩生烃量研究[J]. 石油实验地质, 2007, 29(2): 162-166. doi: 10.11781/sysydz200702162

    LI Huili, SHAO Zhibing, JIN Zhijun, et al. Study on the hydrocarbon-generation amount under the complex geological history in the poly-cyclic basin[J]. Petroleum Geology & Experiment, 2007, 29(2): 162-166. doi: 10.11781/sysydz200702162
    [4] 金之钧, 张刘平, 杨雷, 等. 沉积盆地深部流体的地球化学特征及油气成藏效应初探[J]. 地球科学(中国地质大学学报), 2002, 27(6): 659-665. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGSY200309001024.htm

    JIN Zhijun, ZHANG Liuping, YANG Lei, et al. Primary study of geochemical features of deep fluids and their effectiveness on oil/gas reservoir formation in sedimental basins[J]. Earth Science(Journal of China University of Geosciences), 2002, 27(6): 659-665. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGSY200309001024.htm
    [5] 孙龙德, 邹才能, 朱如凯, 等. 中国深层油气形成、分布与潜力分析[J]. 石油勘探与开发, 2013, 40(6): 641-649. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201306001.htm

    SUN Longde, ZOU Caineng, ZHU Rukai, et al. Formation, distribution and potential of deep hydrocarbon resources in China[J]. Petroleum Exploration and Development, 2013, 40(6): 641-649. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201306001.htm
    [6] 赵贤正, 金凤鸣, 王权, 等. 中国东部超深超高温碳酸盐岩潜山油气藏的发现及关键技术: 以渤海湾盆地冀中坳陷牛东1潜山油气藏为例[J]. 海相油气地质, 2011, 16(4): 1-10. doi: 10.3969/j.issn.1672-9854.2011.04.001

    ZHAO Xianzheng, JIN Fengming, WANG Quan, et al. A superdeep and superhigh temperature carbonate buried-hill reservoir in Eastern China: discovery and the key exploration technology of Nudong-1 buried-hill oil and gas reservoir in Jizhong Depression, Bohaiwan Basin[J]. Marine Origin Petroleum Geology, 2011, 16(4): 1-10. doi: 10.3969/j.issn.1672-9854.2011.04.001
    [7] 赵贤正, 金凤鸣, 王权, 等. 渤海湾盆地牛东1超深潜山高温油气藏的发现及其意义[J]. 石油学报, 2011, 32(6): 915-927. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201106002.htm

    ZHAO Xianzheng, JIN Fengming, WANG Quan, et al. Niudong 1 ultra-deep and ultra-high temperature subtle buried hill field in Bohai Bay Basin: discovery and significance[J]. Acta Petrolei Sinica, 2011, 32(6): 915-927. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201106002.htm
    [8] HILL R J, TANG Yongchun, KAPLAN I R. Insights into oil cracking based on laboratory experiments[J]. Organic Geoche-mistry, 2003, 34(12): 1651-1672. doi: 10.1016/S0146-6380(03)00173-6
    [9] BEHAR F, LORANT F, MAZEAS L. Elaboration of a new compositional kinetic schema for oil cracking[J]. Organic Geochemistry, 2008, 39(6): 764-782. doi: 10.1016/j.orggeochem.2008.03.007
    [10] SCHENK H J, DI PRIMIO R, HORSFIELD B. The conversion of oil into gas in petroleum reservoirs. Part 1: comparative kinetic investigation of gas generation from crude oils of lacustrine, marine and fluviodeltaic origin by programmed-temperature closed-system pyrolysis[J]. Organic Geochemistry, 1997, 26(7/8): 467-481.
    [11] 何坤, 张水昌, 米敬奎. 原油裂解的动力学及控制因素研究[J]. 天然气地球科学, 2011, 22(2): 211-218. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201102003.htm

    HE Kun, ZHANG Shuichang, MI Jingkui. Research on the kinetics and controlling factors for oil cracking[J]. Natural Gas Geoscience, 2011, 22(2): 211-218. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201102003.htm
    [12] 张水昌, 胡国艺, 米敬奎, 等. 三种成因天然气生成时限与生成量及其对深部油气资源预测的影响[J]. 石油学报, 2013, 34(S1): 41-50. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2013S1004.htm

    ZHANG Shuichang, HU Guoyi, MI Jingkui, et al. Time-limit and yield of natural gas generation from different origins and their effects on forecast of deep oil and gas resources[J]. Acta Petrolei Sinica, 2013, 34(S1): 41-50. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2013S1004.htm
    [13] 张水昌, 何坤, 王晓梅, 等. 深层多途径复合生气模式及潜在成藏贡献[J]. 天然气地球科学, 2021, 32(10): 1421-1435. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202110001.htm

    ZHANG Shuichang, HE Kun, WANG Xiaomei, et al. The multi-path gas generation model and its potential contribution to petroleum accumulation in deep formations[J]. Natural Gas Geoscience, 2021, 32(10): 1421-1435. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202110001.htm
    [14] 孟庆强, 李京洲, 刘文汇, 等. 膏盐岩含量对成熟阶段页岩生烃影响的模拟实验[J]. 特种油气藏, 2022, 29(5): 113-118. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202205016.htm

    MENG Qingqiang, LI Jingzhou, LIU Wenhui, et al. Simulation study on the effect of gypsum-salt content on hydrocarbon generation in mature stage shale[J]. Special Oil & Gas Reservoirs, 2022, 29(5): 113-118. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202205016.htm
    [15] 任战利, 崔军平, 祁凯, 等. 深层、超深层温度及热演化历史对油气相态与生烃历史的控制作用[J]. 天然气工业, 2020, 40(2): 22-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202002004.htm

    REN Zhanli, CUI Junping, QI Kai, et al. Control effects of temperature and thermal evolution history of deep and ultra-deep layers on hydrocarbon phase state and hydrocarbon generation history[J]. Natural Gas Industry, 2020, 40(2): 22-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202002004.htm
    [16] 郝芳, 邹华耀, 倪建华, 等. 沉积盆地超压系统演化与深层油气成藏条件[J]. 地球科学(中国地质大学学报), 2002, 27(5): 610-615. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205021.htm

    HAO Fang, ZOU Huayao, NI Jianhua, et al. Evolution of overpressured systems in sedimentary basins and conditions for deep oil/gas accumulation[J]. Earth Science(Journal of China University of Geosciences), 2002, 27(5): 610-615. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205021.htm
    [17] LIU Quanyou, PENG Weilong, MENG Qingqiang, et al. Fractionation of carbon and hydrogen isotopes of TSR-altered gas products under closed system pyrolysis[J]. Scientific Reports, 2020, 10(1): 12921. doi: 10.1038/s41598-020-69580-0.
    [18] 刘全有, 朱东亚, 孟庆强, 等. 深部流体及有机—无机相互作用下油气形成的基本内涵[J]. 中国科学(地球科学), 2019, 49(3): 499-520. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201903002.htm

    LIU Quanyou, ZHU Dongya, MENG Qingqiang, et al. The scientific connotation of oil and gas formations under deep fluids and organic-inorganic interaction[J]. Science China (Earth Sciences), 2019, 62(3): 507-528. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201903002.htm
    [19] SEEWALD J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J]. Nature, 2003, 426(6964): 327-333.
    [20] ZHANG Shuichang, HE Kun, HU Guoyi, et al. Unique chemical and isotopic characteristics and origins of natural gases in the Paleozoic marine formations in the Sichuan Basin, SW China: isotope fractionation of deep and high mature carbonate reservoir gases[J]. Marine and Petroleum Geology, 2018, 89: 68-82.
    [21] 张水昌, 苏劲, 张斌, 等. 塔里木盆地深层海相轻质油/凝析油的成因机制与控制因素[J]. 石油学报, 2021, 42(12): 1566-1580. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202112003.htm

    ZHANG Shuichang, SU Jin, ZHANG Bin, et al. Genetic mechanism and controlling factors of deep marine light oil and condensate oil in Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(12): 1566-1580. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202112003.htm
    [22] ZHANG Shuichang, MI Jingkui, HE Kun. Synthesis of hydrocarbon gases from four different carbon sources and hydrogen gas using a gold-tube system by Fischer-Tropsch method[J]. Chemical Geology, 2013, 349-350: 27-35.
    [23] 戴金星, 邹才能, 张水昌, 等. 无机成因和有机成因烷烃气的鉴别[J]. 中国科学(D辑), 2008, 38(11): 1329-1341. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200811001.htm

    DAI Jinxing, ZOU Caineng, ZHANG Shuichang, et al. Identification of inorganic and organic alkane gases[J]. Science in China (Series D), 2008, 38(11): 1329-1341. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200811001.htm
    [24] EHRENBERG S N, NADEAU P H, STEEN Ø. Petroleum reservoir porosity versus depth: influence of geological age[J]. AAPG Bulletin, 2009, 93(10): 1281-1296.
    [25] EHRENBERG S N, WALDERHAUG O, BJØRLYKKE K. Carbonate porosity creation by mesogenetic dissolution: reality or illusion?[J]. AAPG Bulletin, 2012, 96(2): 217-233.
    [26] 马永生, 蔡勋育, 赵培荣. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘, 2011, 18(4): 181-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201104014.htm

    MA Yongsheng, CAI Xunyu, ZHAO Peirong. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J]. Earth Science Frontiers, 2011, 18(4): 181-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201104014.htm
    [27] 何治亮, 魏修成, 钱一雄, 等. 海相碳酸盐岩优质储层形成机理与分布预测[J]. 石油与天然气地质, 2011, 32(4): 489-498. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201104004.htm

    HE Zhiliang, WEI Xiucheng, QIAN Yixiong, et al. Forming mechanism and distribution prediction of quality marine carbonate reservoirs[J]. Oil & Gas Geology, 2011, 32(4): 489-498. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201104004.htm
    [28] 陈军海, 王怡, 韩艳浓, 等. 一种利用岩石强度刻划试验确定岩石PDC钻头可钻性级值的方法[J]. 中国石油大学学报(自然科学版), 2017, 41(2): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201702011.htm

    CHEN Junhai, WANG Yi, HAN Yannong, et al. A new method for assessing rock's drillabity for PDC bits via a scratch testing[J]. Journal of China University of Petroleum, 2017, 41(2): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201702011.htm
    [29] 康玉柱, 凌翔, 陈新华. 构造体系控油方式[J]. 新疆石油地质, 2013, 34(4): 375-377. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201304003.htm

    KANG Yuzhu, LING Xiang, CHEN Xinhua. Petroleum control patterns by structural systems[J]. Xinjiang Petroleum Geology, 2013, 34(4): 375-377. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201304003.htm
    [30] 贾承造, 张水昌. 中国海相超深层油气形成[J/OL]. 地质学报, 2023: 1-27. [2023-08-28]. DOI: 10.19762/j.cnki.dizhi-xuebao.2023201.

    JIA Chengzao, ZHANG Shuichang. Formation of marine ultra-deep oil and gas in China[J/OL]. Acta Geologica Sinica, 2023: 1-27. [2023-08-28]. DOI: 10.19762/j.cnki.dizhixuebao.2023201.
    [31] HAO Fang. Enrichment mechanism and prospects of deep oil and gas[J]. Acta Geologica Sinica (English Edition), 2022, 96(3): 742-756. DOI: 10.1111/1755-6724.14961.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  545
  • HTML全文浏览量:  168
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-20
  • 修回日期:  2023-08-28
  • 刊出日期:  2023-09-28

目录

    /

    返回文章
    返回